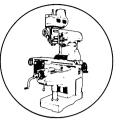
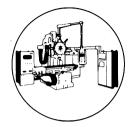
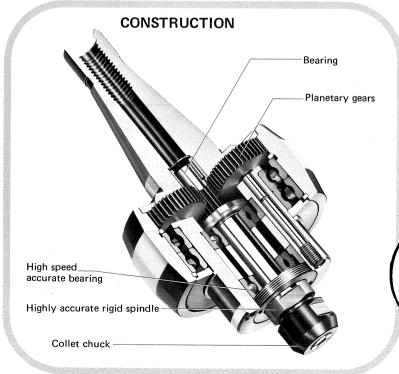

'BIG' HIGH SPINDLE - Increases spindle speed from 3 to 7 times.


The BIG High Spindle mounted on milling, drilling or boring machines equipped with N.C. or A.T.C. systems greatly increases cutting speed, giving increased efficiency when machining ferrous or non-ferrous materials with small diameter cutting tools. Also, by allowing the use of lower spindle speeds, machine life can be extended.





JIG MILLING MACHINE

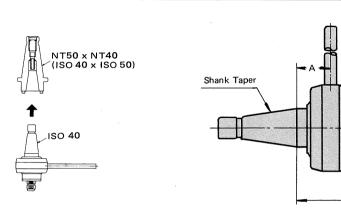

BORING MACHINE

N.C. MACHINE

For small diameter endmills and drills requiring high spindle speeds not available on conventional machines.

[FEATURES]

- (1) With 'Big' High Spindle, Optimal cutting conditions are easily achieved, eliminating tool breakage and increasing efficiency.
- (2) Optimal cutting conditions give the highest accuracy and quality of surface finish.
- (3) Machine wear can be reduced by using substantially lower spindle speeds.
- (4) A range of 'BIG' High Spindles are available for drilling, milling and boring machines and NC machining centres.



SPECIFICATION

Model	Speed	Shank Taper		Capacity (MAX)		Dφ		L	Α
	Ratio			Drill	Endmill	J 9	dφ		^
X7G-	1:7	ISO 30 ISO 40 ISO 45 MT3, MT4	10,000 r. p.m	5∳	6ϕ (alumi-	102	28	121	39
X7G-L	1.,			59	num 8mmφ)	102	28	161	39
X4G-	1:4	ISO 40 ISO 50	7, 500 r. p.m	6.5∳	10φ· (alumi-	128	37	145	27
X4G-L	1.4	MT5, MT6		0.59	num 12mmφ)	128	37	182	27
хзG-	1:3	ISO 50 ISO 60 MT6	4,000 r. p.m		20 ¢	175	58	184	37

SPECIAL ACCESSORY for HIGH SPINDLE

Description	Head	Model
1 STRAIGHT COLLET	X7G	C6-3·4·5ø
	X4G	C10-3·4·5·6·8¢
	ХЗG	C20-6·8·10·12·16¢
2 COLLET W/NUT	X7G	X7G-6·8∮ (8φ available only for aluminum.)
	X4G	X4G-10 · 12¢ (12φ available only for aluminum.)
3 DRILL CHUCK ADAPTOR	X7G	X7G-J1 B10
	X4G	X4G-J1- B10
4 REDUCTION SLEEVE	X7G-40 X4G-40	NT40×NT50 (ISO 40 x ISO 50)
5 KEYLESS DRILL CHUCK	X7G X4G	30-J1 $(0\sim3\phi)$ 50-J1 $(0\sim5\phi)$ 65-J1 $(0\sim6.5\phi)$

SET COMPOSITION

X7G -40

Shank ISO No. 40

Model	Taper		Stand and Acce	ssory		Thread
X7G-30	ISO 30					
-30L	130 30	Straight Collet	C6-3 \cdot 4 \cdot 5 ϕ	1 pc (each)		U1/2-13 (M12P1.75)
-40	ISO 40	Collet w/Nut	X7G -6ϕ	1 pc		
-40L	130 40	Drill Chuck Adaptor	X7G-J1 (or B10)	1 pc		U5/8-11 (M16P2.0)
-3	MT3	Stop Bar		1 pc		U1/2-13 (M10P1.5)
-4	MT4	Wrenches		3 pcs		U5/8-11 (Tang)
-32	32∮					Stgt Shank
-T45	ISO 45				for QUICK CHAN	GE master holder, MH50
X4G-40	ISO 40	Straight Collet	C10-6 · 8φ	1 pc (each)		U5/8-11 (M16P2.0)
-50	ISO 50	Collet w/Nut	X4G10φ	1		U1-8 (M24P3.0)
-5	MT5	Stop Bar		1		U3/4-10 (Tang)
-T45	ISO 45	Wrenches		2 pcs	for QUICK CHANG	GE master holder, MH50
X3G-50	ISO 50	Straight Collet	C20-6 · 8 · 10 · 12	2 · 16φ 1 p	oc (each) 16¢	U1-8 (M24P3.0)
-60	ISO 60	Drill Chuck Adaptor		1		U1-1/4-7 (M30P3.5)
-6	МТ6	Wrenches		2 p	ocs	U1-8 (Tang)

- Indicate dimensions for cotter hole when necessary.
 Indicate kind of thread and whether threaded or w/tang.

0

INSTRUCTIONS FOR OPERATION

- [1] Mount 'BIG' High Spindle on machine spindle
- [2] Set the stop bar as indicated in the sketch on the right.
- [3] Affix a bar to the machine to locate the stop bar.
- [4] Insert the tool into the collet chuck and clamp with the accessory wrench.
- [5] Select cutting speed referring to the table below.

TABLE A shows cutting speeds for different materials using high speed steel tools. TABLE B, the rpm corresponding to the tool diameter for given cutting speeds.

Table A CUTTING SPEEDS for TYPE of MATERIAL

Material	Hss Tool	Carbide Tool			
Aluminum	100 m/min	100 m/min			
Brass	45 m/min	100 m/min			
Light Steel	20 ~ 30 m/min	$60\sim90$ m/min			
Soft Steel	15 ~ 25 m/min	$50\sim70$ m/min			
Hard Steel	15 ~ 30 m/min	50 ∼ 70 m/min			
Stainless Steel	8 ~ 12 m/min	40 ∼ 60 m/min			

Bore m/mn	0.4ϕ	0.5ϕ	0.8ϕ	1φ	2φ	3φ	4φ	5φ	6ϕ	8φ	10φ
10	8,000	6,300	4,200	3,200	1,600						
15	12,000	9,500	6,000	4,800	2,400	1,600					
20	16,000	12,000	8,000	6,400	3,200	2,100	1,600				
25	19,800	15,800	10,000	8,000	4,000	2,650	2,000	1,600	1,300	1,000	
30		19,000	12,000	9,600	4,800	3,100	2,500	1,900	1,600	1,200	950
40			16,000	12,700	6,400	4,250	3,200	2,550	2,150	1,600	1,300
50			20,000	16,000	8,000	5,300	4,000	3,200	2,650	2,000	1,600
. 80					12,800	8,500	6,300	5,100	4,250	3,200	2,500
100		-			16,000	10,500	8,000	6,400	5,300	4,000	3,200
120							9,500	7,600	6,400	4,800	3,800

EXAMPLE

In the case of cutting steel with an endmill of diameter 2 mm, Table A shows a cutting speed of 25 m/min Refering to Table B, a cutting speed of 25 m/min using a 2 mm diameter tool yields a figure of 4,000 rpm suitable for BIG High Spindle. When X7G is employed (4,000 divided by 7 equals 570), therefore, spindle speed is set to 570 rpm.

Roughly twice the rpm can be used with carbide cutters.

< MAINTENANCE >

- (1) 'BIG' High Spindles are sealed units and, during normal use, need no attention.
- (2) After 6,000 hours of use (approximately six months) it is advisable to dismantle for cleaning and greasing.

 Contact your BIG Agent.

