
LINE TECH positioning units and integral axles

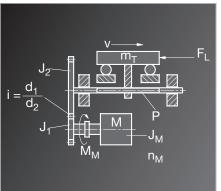
Ready to built-in linear slide units with drive (PE) and integrated motor (Integral)

CONSULTING

Foreword

LINE TECH positioning units and integral axles are of modular conception, ready to built-in linear slide units. Due to their design features, they're designated for use in applications whereas high precision and outstanding performance is a must. The LINE TECH product range not only offers positioning units and integral axles but also linear modules, step- and servomotors as well as continuous and linear path controls and therefore connects the single units to a customized positioning system, thus fulfilling the requirements of almost any application in the field of handling technology.

Content-overview


pages

LINE TECH positioning units _____

___5-37

LINE TECH integral axles ______ 39–59

Design fundamentals ______61–66

Table of content	page/s
- Basic design / Lubrication / Maintenance	6
- Designation system	7
- Cross tables	8
- Selection evidence:	
- Execution, Stroke, Expansion bellow	
- Drive	
- Limit switch	12–13
- Mounting conditions, Reduction, Drive mounting	14–15
- Technical data:	
- Load factor, Torque, Area momentum, Rigidity	
- Precision	17
- Dimensions of the positioning unit PE 1:	
- with screw drive or pneumatic cylinder and expansion bellow	18
- with screw drive or pneumatic cylinder without expansion bellow	19
- with belt drive and expansion bellow	20
- with belt drive without expansion bellow	21
- Dimensions of the positioning unit PE 2:	
- with screw drive or pneumatic cylinder and expansion bellow	22
- with screw drive or pneumatic cylinder without expansion bellow	23
- with belt drive and expansion bellow	24
- with belt drive without expansion bellow	25
- with belt drive and expansion bellow (reversing drive)	
- with belt drive without expansion bellow (reversing drive)	27
- Dimensions of the positioning unit PE 3:	
- with screw drive or pneumatic cylinder and expansion bellow	28
- with screw drive or pneumatic cylinder without expansion bellow	
- with belt drive and expansion bellow	
- with belt drive without expansion bellow	
- Dimensions of the positioning unit PE 4:	
- with screw drive and expansion bellow	32
- with screw drive without expansion bellow	
- Grooves and Sliding blocs / Profile cross-sections	34–35
- Dimensions drive mounting	36–37

Basic design / Lubrication / Maintenance

LINE TECH positioning units

LINE TECH positioning units are of modular conception, ready to built-in linear slide units with drive.

For all sizes, sealed guiding elements are in use. For the power transmission, preferably rolled or ground ball screws, satellite roller screws or toothed belts are installed; but also high-helix lead screws "Speedy", rod-less pneumatic cylinders and racks are available.

The guidance as well as the transmission elements are protected against external contamination such as dirt, dust and others by an expansion bellow made of special fabrics. This expansion bellow can be omitted, leading to a reduced overall length of the unit.

Base plate and slide body as well as the end plates are made of extrusion molded alloy. In the end plates integrated limit switches allow, in conjunction with the motor and the control unit, a perfect positioning and prevent against overrunning of the slide.

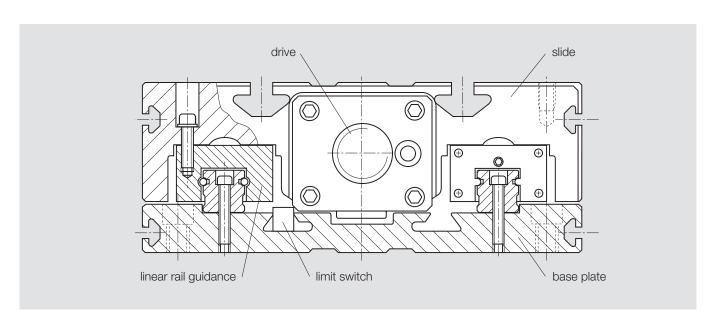
The chosen design allows for a very high performance at most compact dimensions.

Lubrication

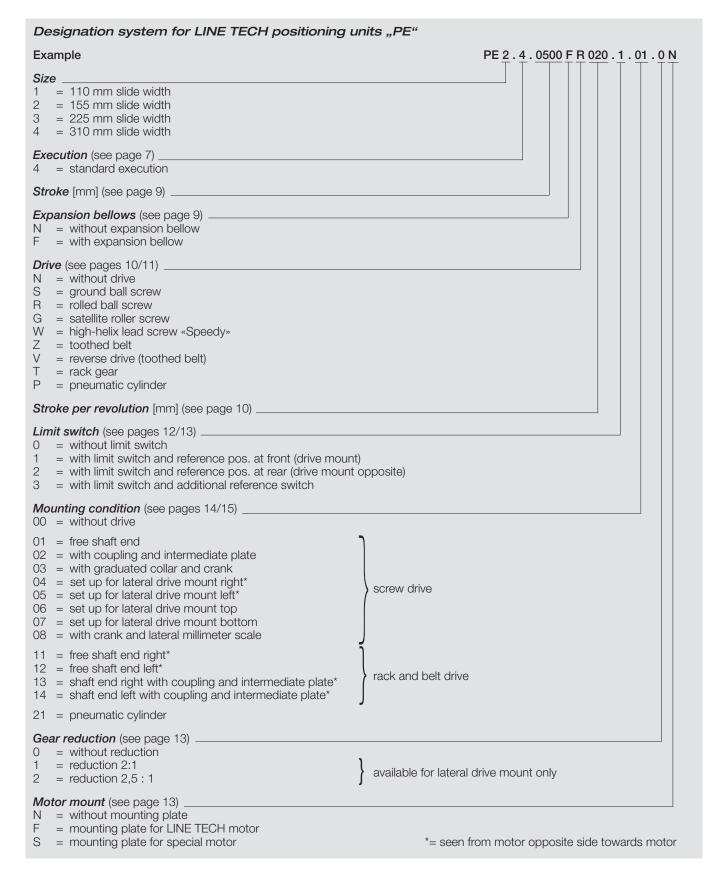
LINE TECH positioning units are pre-lubricated with "Microlube GBU Y 131". This quality grease offers outstanding properties for the guidance and screw drive elements as well.

Depending on the specific requirements and the environmental condition, the unit shall be re-greased regularly. As an average, the re-greasing should be done every 500 running hours.

After removal of the expansion bellow, the guidance rail and the spindle can easily be greased through the lubricator nipples at the front face of the carriage. For the guide bloc, an elongation piece is necessary (article ZPE.ADAPTER), which can be obtained at the LINE TECH store. All roller bearings installed have for-life lubrication and therefore do not need any maintenance.


Correct and regular re-greasing can remarkably prolong the equipments life cycle.

Maintenance


LINE TECH positioning units are in general maintenance-free. Depending on the application however, it is recommended to remove once in a while the expansion bellow in order to clean and to check the unit (especially in case of very fine machining-residuals).

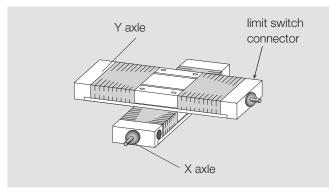
Service temperature

The allowed service temperature is given by the composites installed. For the drives and controls refer to the specific publication.

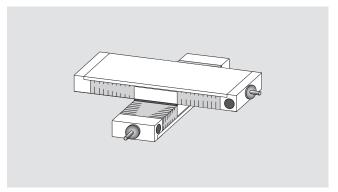
Designation system

Cross tables

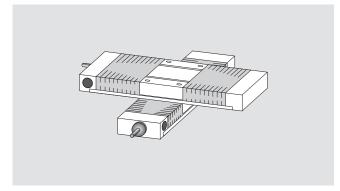
Cross tables

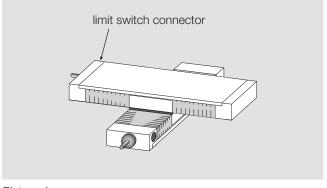

Line Tech positioning units are also available as two axle units (cross table). At this, the designation system as shown beside, based on the designation system of page 5, is to be used. There are totally four configurations possible. The correlation between the limit switch connector (black point) and the position of the drive (screw nose) will be shown on pages 12 and 13.

Designation system for cross table mounting								
Example:	<u>KM</u> . P	E3 / PE	2 . <u>AC</u>					
Cross mounting								
Symbol of the positioning unit of the lower axle								
Symbol of the positioning unit of the upper axle								
Mounting layout (see pictures 1–4)								


Cross table mountings of the same size of AC and AD layout are free of charge. The mounting layouts BC and BD as well as the combination of any different sizes need an intermediate plate and therefore are at a surcharge.

Standard precision for cross table mounting: 0.1mm / 300mm stroke. Higher precision on request.


The individual positioning units must be ordered separately.


Picture 1
Mounting layout: AC

Picture 2
Mounting layout: BC

Picture 3
Mounting layout: AD

Picture 4
Mounting layout: BD

Selection notice

The selection notices take into consideration the various order options and are structured analog to the designation system. Thus permitting the optimal choice of the positioning unit meeting your specific requirements best.

Execution

All sizes of the LINE TECH positioning units are equipped with two guiding rails and four guiding carriages (picture 6). This guiding system meets all standard-requirements regarding load capacity and precision.

In case of any higher requirements (rigidity, torque, load factor) it is possible to install linear guiding rails with a higher pre-load.

Stroke

Thanks to a most flexible manufacturing process, customer requirements for stroke length beyond the standard program can be fulfilled. However, it shall be taken into consideration that the maximum stroke length is related to the chosen drive type (see page 8). In case of the overall length of the positioning unit exceeding 2400 mm, the base plate will be compound of more then one. This doesn't have any consequence to the hole pattern whatsoever.

Expansion bellows

For the dirt protection of the bearing and drive, the positioning unit can be equipped with an expansion bellow. If the system goes without expansion bellow, the overall length of the unit for a given stroke length will be reduced.

Picture 6
Standard execution

Drive

In order to facilitate the selection of the best drive solution, you'll find hereafter the different possibilities and their characteristics. By this, the different arrangements can be compared and the solution meeting best the customer requirements

easily be determined. In case of higher requirements to the positioning system please contact our technical support.

Drive	Size	Execution ¹⁾ diam. x pitch [mm]	Stroke range [mm]	Positioning accuracy [µm/mm]
Ball screw	PE 1	rolled ground 16x5 16x5 16x10 16x10 16x16 20x5 20x5	rolled ground ≤ 1500 ≤ 500 ≤ 1500 ≤ 500 ≤ 1500 ≤ 2000 ≤ 750	rolled ⁶⁾ ground 52/300 23/300 52/300 23/300 52/300 52/300 23/300
	PE 3	20x20 25x5	≤ 2000 ≤ 3000 ≤ 1200 ≤ 3000 ≤ 1200 ≤ 3000 ≤ 1500 ≤ 3000 ≤ 1500	52/300 52/300 23/300 52/300 23/300 52/300 23/300 52/300 23/300
Satellite roller screw	PE 2 PE 3 PE 4	32x32 15x2 15x5 23x2 23x5 on request	≤ 3000 ≤ 400 ≤ 500	52/300 12/300 12/300
High-helix lead screw «Speedy»	PE 2 PE 3	19x30 on request	≤ 2000 ≤ 3000	200/300 200/300
Toothed belt revolving	PE 1 PE 2 PE 3	AT 5/16 100mm/r AT 5/32 75mm/r AT 10/50 190mm/r	4002000 5002000 6003000	200/1000 200/1000 200/1000
Toothed belt reversing	PE 1 PE 2 PE 3	— AT 5/50 175mm/r —	_ ≥ 500 _	_ 150/1000 _
Rack gear	PE 1 PE 2 PE 3 PE 4	— M5/14,5 100mm/r M7,5/24,5 150mm/r on request		_ 15/300 15/300 15/300
Pneumatic cylinder	PE 1 PE 2 PE 3	P210 ø10 P210 ø16 P210 ø25	100500 1001000 1001500	_ _ _

¹⁾ additional executions on request

²⁾ not taking into account the reversal backlash

³⁾ depending upon the length of the spindle and the critical speed respectively (see pages 62/63)

Repeating accuracy [+/- mm]	Reversal backlash [mm]	Speed max. [m/s]	Accaleration max. [m/s²]	Axial load rat C _{dyn} [N]	es C ₀
rolled ground 0,01 0,01 0,01 0,01 0,01		rolled ground 3) 3) 3) 3)	10 10 10	6950	3400
0,01 0,01 0,01		3) 3)	10 10	8000	4300
0,01 0,01 0,01 0,01 0,01		3) 3) 3) 3)	10 10 10	10000	5500
0,01 0,01 0,01 0,01 0,01		3) 3) 3) 3)	10 10 10	25000	15000
0,005 0,005		3)	10 10	8000 10000	4300 5500
0,05 0,05	O,1 ⁵⁾ O,1 ⁵⁾	3)	10 10		1800
0,1 0,1 0,1		1,6 (optional 5) 1,6 (optional 5) 1,6 (optional 5)	4) 4) 4)	390 550 2500	565 790 3110
 0,05 		 1,6 (optional 5) _	4)	_ 2350 _	 3010
- 0,01 ²⁾ 0,01 ²⁾ 0,01 ²⁾	- 0,1 0,1 0,1	- 1,6 (optional 5) 1,6 (optional 5) 1,6 (optional 5)	4) 4) 4)		- 3140 4580 6270
- - -		1,6 (optional 5) 1,6 (optional 5) 1,6 (optional 5)	4) 4) 4)		43 (6 bar) 78 (6 bar) 250 (6 bar)

⁴⁾ no mechanical limit, depends upon the load

⁵⁾ special execution pre-loaded available

⁶⁾ special execution with positioning accuracy 23µm/300mm possible

Limit switches

The limit switches are used in conjunction with a control unit to limit the stroke (prevent overrunning of the carriage) and to define the reference position.

The widely used and LINE TECH standard inductive limit switches are of the PNP-break contact type and show the

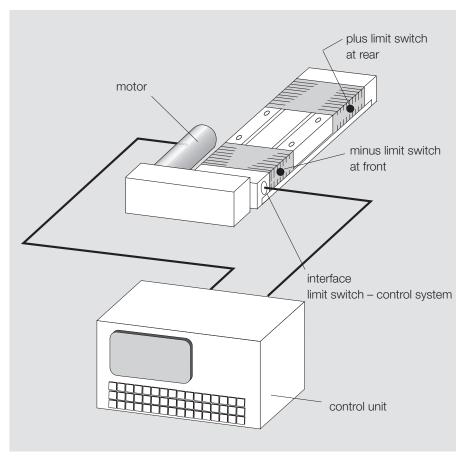
Supply: 10...30 VDC
Current consumption off-load: < 10 mA

Load: max. 200 mA

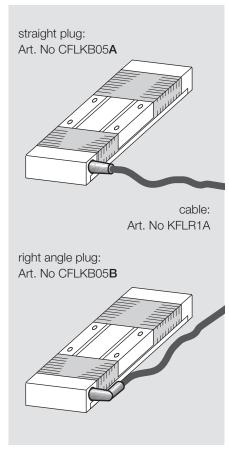
following characteristics:

Mechanical switch-ratio: < 0.4mm

On request the following non standard limit switches are available:


- PNP-make type (PNP-NO)
- NPN-break type (NPN-NC)
- NPN-make type (NPN-NO)
- Mechanical limit switch (micro switch)

The LINE TECH product range includes continuous and linear path control systems as well as step motors, AC and DC servo drives. The individual components are tuned together and complete LINE TECH elements to custom made positioning systems.


Fitting of the limit switches

The fitting position of the limit switches is shown in picture 7a. The reference position can be allocated either to the plus (+) or to the minus (-) limit switch. Special applications often require a separate reference position switch which will be, upon customer definition, located between the plus- and minus limit switch. The limit switch mounted closer to the drive (electrical motor) is named the front or forward limit switch.

Limit switch counterplugs with cable are not included in the delivery. However they can be ordered ready-made at LINE TECH (see picture 7b).

Picture 7b: Limit switch plug and cable

Connector plug

The pin assignment for the standard limit switch is shown in the schemas 8a and 8b. The individual pins are assigned as follows:

Pin 1 minus (-) direction (load)

Pin 2 OV (GND)

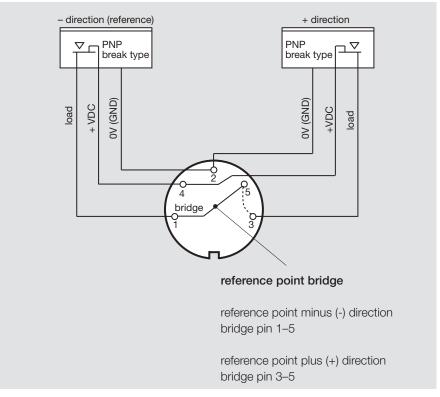
Pin 3 plus (+) direction (load)

Pin 4 +10...30 VDC Pin 5 reference (load)

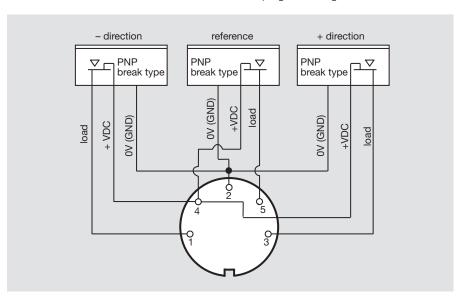
Color-code legend to the schemas 8a and 8b:

Load = black +VDC = brown 0V (GND) = blue

Assembly condition


The different assembly conditions are shown on pages 14 and 15.

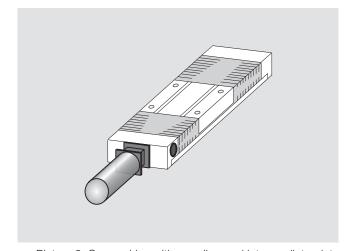
Reduction


On request, for the screw drive solution with lateral motor mounting the speed (rpm) can be reduced at a 2:1 or 2.5:1 ratio.

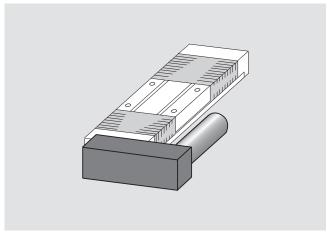
Motor mounting

LINE TECH offers a wide range of motors tuned to the positioning units. Furthermore, the installation of special motors according to the customer specification is possible.

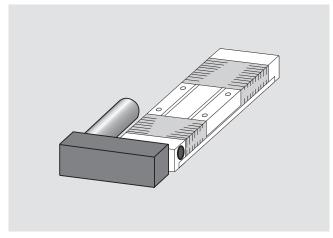
Schema 8a Connector plug with integrated reference switch

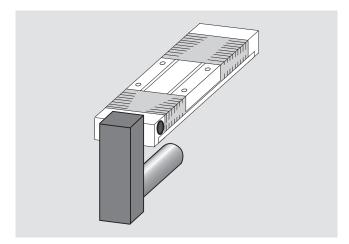

Schema 8b Connector plug with separate reference switch

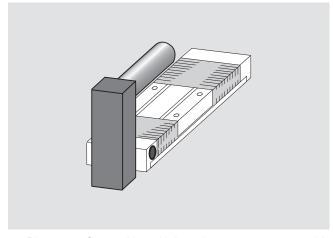
Mounting conditions

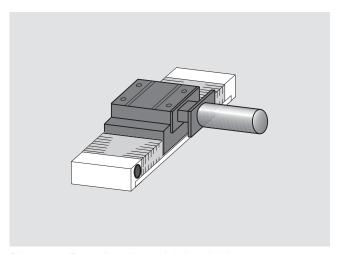

The positioning units can be supplied in different configurations (pictures 9–19). Depending on the drive solution, different executions are being offered as a standard. The difference between left and right hand mounting condition is given by the position of the limit switch connector plug. The respective location is marked with a black dot in the pictures 9–19.

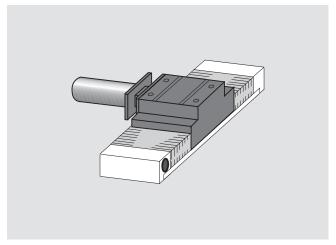
= limit switch connector plug (interface limit switch control)

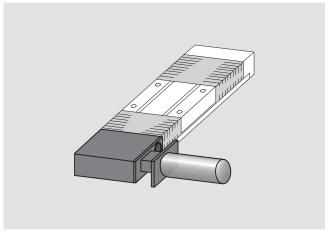

Dimensions see page 36.

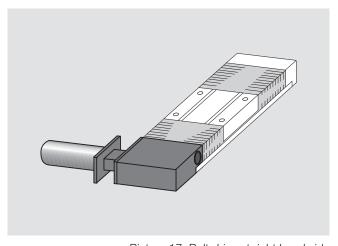

Picture 9: Screw drive with coupling and intermediate plate (Mounting condition 01 or 02)

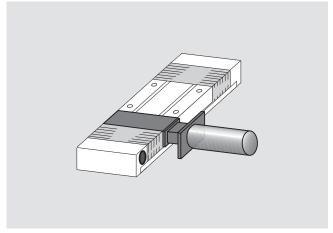

Picture 10: Screw drive with lateral motor mount at left hand side (Mounting condition 05)

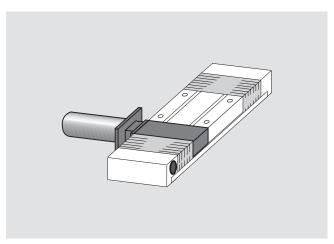

Picture 11: Screw drive with lateral motor mount at right hand side (Mounting condition 04)


Picture 12: Screw drive with lateral motor mount at the bottom (Mounting condition 07)


Picture 13: Screw drive with lateral motor mount at topside (Mounting condition 06)


Picture 14: Reversing drive at left hand side (Mounting condition 12 or 14)


Picture 15: Reversing drive at right hand side (Mounting condition 11 or 13)


Picture 16: Belt drive at left hand side (Mounting condition 12 or 14)

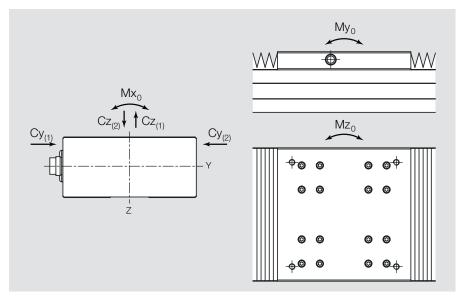
Picture 17: Belt drive at right hand side (Mounting condition 11 or 13)

Picture 18: Rack gear drive at left hand side (Mounting condition 12 or 14)

Picture 19: Rack gear drive at right hand side (Mounting condition 11 or 13)

Technical data

Load rate

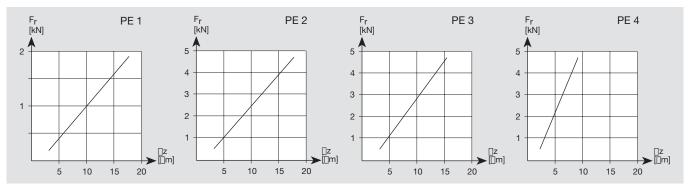

The load rate is given by the guiding system. Considering the requested life time we recommend to apply max. 20% of the dynamic load rate to the unit.

Torque

Also for the torque, the values are determined by the execution of the guiding system. Picture 20 shows the directions of possible torque application.

Area momentum

For positioning units the maximum allowed deflection angle is of 5'. This value being exceeded will have an impact on the unit's life-cycle.


Picture 20: Torques

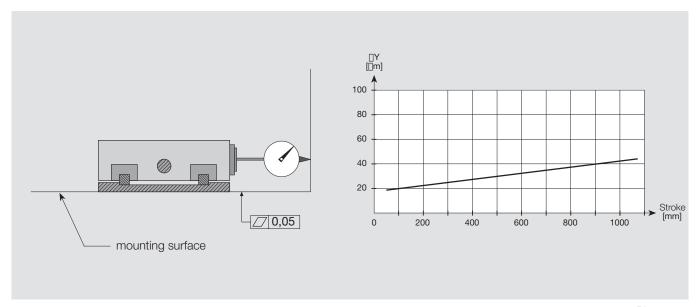
Туре	Load I dynan Cy _(1,2) [kN]	rates * nic Cz _(1,2)	Torque dynam Mx ₀ [Nm]		Mz _o	Load ra static Cy _{0 (1,2)} [kN]	tes Cz _{0 (1)}	Cz _{0 (2)}	Torques static Mx ₀ [Nm]	My ₀	Mz ₀	Area momei ly _s [cm ⁴]	ntum Iz _s
PE1	9.2	9.2	281	253	253	13.8	13.8	13.8	422	380	380	8.9	178.2
PE2	29.3	33.4	1618	1469	1290	42.5	50.7	67.6	2457	2230	1872	9.7	513.7
PE3	41.4	46.8	3157	3065	2691	59.2	70.5	94.0	4757	4617	3877	202.8	3940.0
PE4	161.9	184.0	20240	17847	15708	230.5	274.5	366.0	30195	26625	22365	125.1	8560.0

* recommended load of a positioning unit < 20% of the dynamic rate

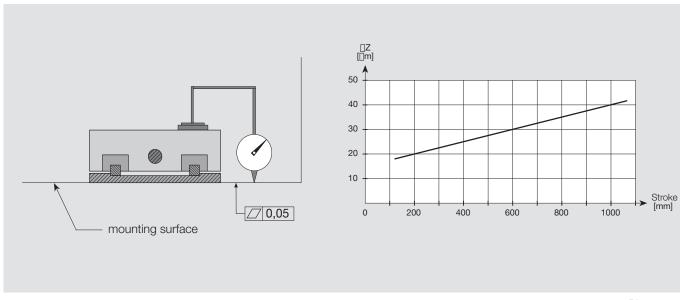
Rigidity

The values for the rigidity refer to the guiding rail only without considering the environmental condition; they are shown in picture 21.

Picture 21: Rigidity

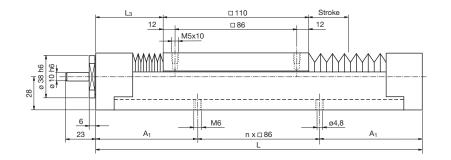

Technical data

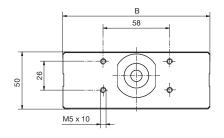
Precision


The precision of any linear system not only depends on the positioning and repeating accuracy but also on the track accuracy of the slide.

These values are indicated in the diagrams shown in picture 22 and 23.

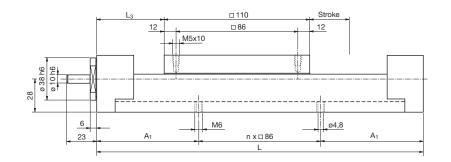
Also the mounting surface of the positioning unit has a great influence on the slide accuracy since any inaccuracy of the mounting surface can hardly be compensated by the positioning unit itself.

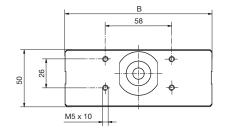



Picture 22 Accuracy diagram Y-axis

Picture 23
Accuracy diagram Z-axis

PE 1 with screw drive or pneumatic cylinder and expansion bellow

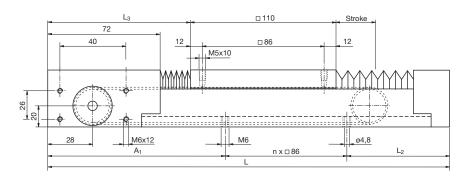


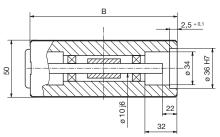


Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A ₁	Screw length	Weight
[mm]		[mm]					[kg]
50	110	255	47.5	2	41.5	225	3.0
100	110	330	60	2	79	275	3.5
150	110	400	70	3	71	350	4.0
200	110	475	82.5	4	65.5	483	4.5
250	110	550	95	5	60	558	5.0
300	110	620	105	6	52	628	5.5
350	110	690	115	7	44	659	5.9
400	110	765	127.5	7	81.5	721	6.4
450	110	840	140	8	76	784	6.9
500	110	910	150	9	68	844	7.4
550	110	985	162.5	10	62.5	906	7.9
600	110	1055	172.5	11	54.5	973	8.4
650	110	1130	185	12	49	1029	8.9
700	110	1200	195	13	41	1089	9.4
750	110	1275	207.5	13	78.5	1151	9.9
800	110	1345	217.5	14	70.5	1211	10.3
850	110	1420	230	15	65	1274	10.8
900	110	1490	240	16	57	1334	11.3
1000	110	1635	262.5	18	43.5	1456	12.3
1100	110	1780	285	19	73	1579	13.3
1200	110	1925	307.5	21	59.5	1701	14.2
1300	110	2070	330	23	46	1824	15.2
1400	110	2220	355	24	78	1949	16.2
1500	110	2365	377.5	26	64.5	2071	17.2

The drive solution "pneumatic cylinder" goes without the measurements of the shaft end and eccentric ring.

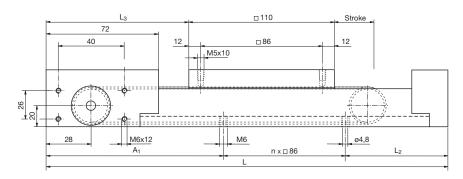
PE 1 with screw drive or pneumatic cylinder without expansion bellow

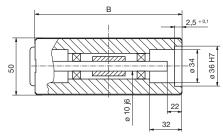



Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A ₁	Screw length	Weight
[mm]		[mm]					[kg]
50	110	255	47.5	2	41.5	225	3.0
125	110	330	47.5	2	79	275	3.5
195	110	400	47.5	3	71	350	4.0
270	110	475	47.5	4	65.5	483	4.5
345	110	550	47.5	5	60	558	5.0
415	110	620	47.5	6	52	628	5.5
485	110	690	47.5	7	44	698	5.9
560	110	765	47.5	7	81.5	773	6.4
635	110	840	47.5	8	76	848	6.9
705	110	910	47.5	9	68	918	7.4
780	110	985	47.5	10	62.5	993	7.9
850	110	1055	47.5	11	54.5	1063	8.4
925	110	1130	47.5	12	49	1138	8.9
995	110	1200	47.5	13	41	1208	9.4
1070	110	1275	47.5	13	78.5	1283	9.9
1140	110	1345	47.5	14	70.5	1353	10.3
1215	110	1420	47.5	15	65	1428	10.8
1285	110	1490	47.5	16	57	1498	11.3
1430	110	1635	47.5	18	43.5	1643	12.3
1575	110	1780	47.5	19	73	1788	13.3
1720	110	1925	47.5	21	59.5	1933	14.2
1865	110	2070	47.5	23	46	2078	15.2
2015	110	2220	47.5	24	78	2228	16.2
2160	110	2365	47.5	26	64.5	2373	17.2

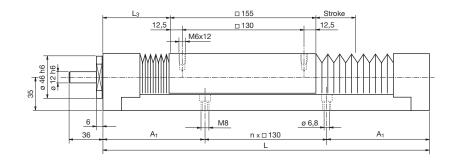
The drive solution "pneumatic cylinder" goes without the measurements of the shaft end and eccentric ring.

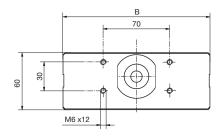
LINE TECH positioning units


PE 1 with belt drive and expansion bellow



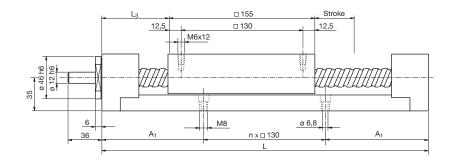
Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A ₁	L_2	Weight
[mm]		[mm]					[kg]
400	110	855	192.5	8	103.5	63.5	7.0
500	110	1005	217.5	10	92.5	52.5	7.9
600	110	1160	245	12	84	44	8.9
700	110	1310	270	13	116	76	9.9
800	110	1465	297.5	15	107.5	67.5	10.9
900	110	1615	322.5	17	96.5	56.5	11.8
1000	110	1770	350	19	88	48	12.8
1100	110	1920	375	20	120	80	13.8
1200	110	2100	415	23	81	41	14.9
1300	110	2275	452.5	25	82.5	42.5	16.0
1400	110	2375	452.5	25	132.5	92.5	16.6
1500	110	2530	480	27	124	84	17.6
1600	110	2680	505	29	113	73	18.6
1700	110	2835	532.5	31	104.5	64.5	19.6
1800	110	2985	557.5	33	93.5	53.5	20.5
1900	110	3135	582.5	35	82.5	42.5	21.5
2000	110	3305	617.5	37	81.5	41.5	22.6

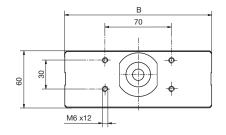

PE 1 with belt drive without expansion bellow



Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A ₁	L_2	Weight
[mm]		[mm]					[kg]
495	110	855	120	8	103.5	63.5	7.0
645	110	1005	120	10	92.5	52.5	7.9
800	110	1160	120	12	84	44	8.9
950	110	1310	120	13	116	76	9.9
1105	110	1465	120	15	107.5	67.5	10.9
1255	110	1615	120	17	96.5	56.5	11.8
1410	110	1770	120	19	88	48	12.8
1560	110	1920	120	20	120	80	13.8
1740	110	2100	120	23	81	41	14.9
1915	110	2275	120	25	82.5	42.5	16.0
2015	110	2375	120	25	132.5	92.5	16.6
2170	110	2530	120	27	124	84	17.6
2320	110	2680	120	29	113	73	18.6
2475	110	2835	120	31	104.5	64.5	19.6
2625	110	2985	120	33	93.5	53.5	20.5
2775	110	3135	120	35	82.5	42.5	21.5
2945	110	3305	120	37	81.5	41.5	22.6

PE 2 with screw drive or pneumatic cylinder and expansion bellow

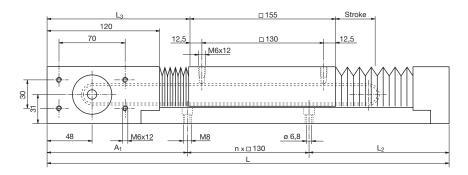


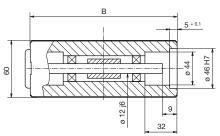


Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A ₁	Screw length	Weight
[mm]		[mm]					[kg]
50	155	330	62.5	1	100	343	9.8
100	155	395	70	2	67.5	408	10.3
150	155	455	75	2	97.5	468	10.8
200	155	520	82.5	3	65	533	11.3
250	155	585	90	3	97.5	598	11.8
300	155	650	97.5	4	65	640	12.3
350	155	715	105	4	97.5	697	12.8
400	155	780	112.5	5	65	754	13.3
450	155	845	120	5	97.5	811	14.0
500	155	910	127.5	6	65	870	14.5
550	155	975	135	6	97.5	927	15.0
600	155	1040	142.5	7	65	984	15.5
650	155	1105	150	7	97.5	1040	16.0
700	155	1170	157.5	8	65	1097	16.5
750	155	1235	165	8	97.5	1157	17.0
800	155	1300	172.5	9	65	1213	17.5
850	155	1380	187.5	9	105	1293	18.0
900	155	1425	185	10	62.5	1327	18.5
950	155	1500	197.5	10	100	1396	19.0
1000	155	1555	200	11	62.5	1441	19.5
1200	155	1815	230	13	62.5	1671	21.5
1400	155	2075	260	15	62.5	1901	23.5
1600	155	2330	287.5	17	60	2131	25.5
1800	155	2590	317.5	19	60	2358	28.0
2000	155	2850	347.5	21	60	2588	30.0

The drive solution "pneumatic cylinder" goes without the measurements of the shaft end and eccentric ring.

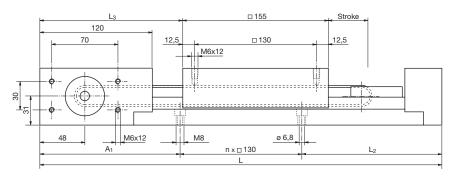
PE 2 with screw drive or pneumatic cylinder without expansion bellow

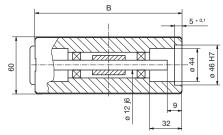



Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A ₁	Screw length	Weight
[mm]		[mm]					[kg]
50	155	330	62.5	1	100	343	9.8
115	155	395	62.5	2	67.5	408	10.3
175	155	455	62.5	2	97.5	468	10.8
240	155	520	62.5	3	65	533	11.3
305	155	585	62.5	3	97.5	598	11.8
370	155	650	62.5	4	65	663	12.3
435	155	715	62.5	4	97.5	728	12.8
500	155	780	62.5	5	65	793	13.3
565	155	845	62.5	5	97.5	858	14.0
630	155	910	62.5	6	65	923	14.5
695	155	975	62.5	6	97.5	988	15.0
760	155	1040	62.5	7	65	1053	15.5
825	155	1105	62.5	7	97.5	1118	16.0
890	155	1170	62.5	8	65	1183	16.5
955	155	1235	62.5	8	97.5	1248	17.0
1020	155	1300	62.5	9	65	1313	17.5
1100	155	1380	62.5	9	105	1393	18.0
1145	155	1425	62.5	10	62.5	1438	18.5
1220	155	1500	62.5	10	100	1513	19.0
1275	155	1555	62.5	11	62.5	1568	19.5
1535	155	1815	62.5	13	62.5	1828	21.5
1795	155	2075	62.5	15	62.5	2088	23.5
2050	155	2330	62.5	17	60	2343	25.5
2310	155	2590	62.5	19	60	2603	28.0
2570	155	2850	62.5	21	60	2863	30.0

The drive solution "pneumatic cylinder" goes without the measurements of the shaft end and eccentric ring.

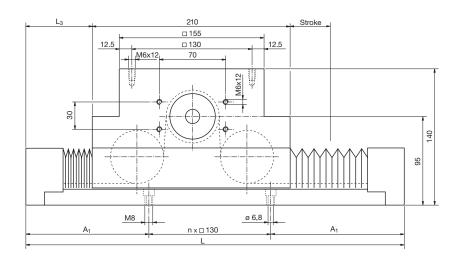
LINE TECH positioning units

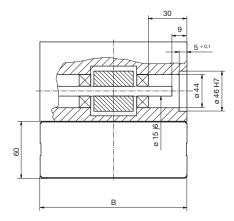

PE 2 with belt drive and expansion bellow



Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A_1	L ₂	Weight
[mm]		[mm]					[kg]
500	155	1015	220	6	157.5	77.5	15.0
600	155	1130	227.5	7	150	70	16.0
700	155	1250	237.5	8	145	65	17.0
800	155	1380	252.5	9	145	65	18.0
900	155	1510	267.5	10	145	65	19.0
1000	155	1635	280	11	142.5	62.5	20.0
1100	155	1765	295	12	142.5	62.5	21.0
1200	155	1895	310	13	142.5	62.5	22.0
1300	155	2025	325	14	142.5	62.5	23.0
1400	155	2155	340	15	142.5	62.5	24.0
1500	155	2285	355	15	207.5	127.5	25.0
1600	155	2410	367.5	17	140	60	26.0
1700	155	2540	382.5	17	205	125	27.0
1800	155	2670	397.5	19	140	60	28.0
1900	155	2800	412.5	19	205	125	29.0
2000	155	2930	427.5	21	140	60	30.0

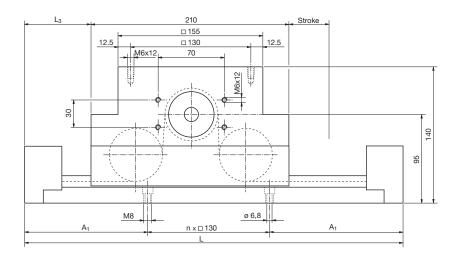
PE 2 with belt drive without expansion bellow

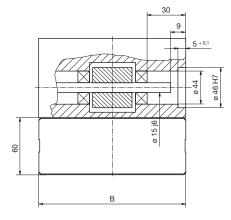




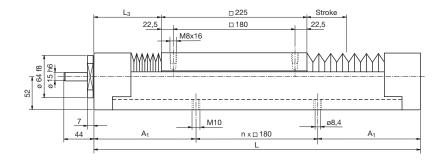
Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A_1	L ₂	Weight
[mm]		[mm]					[kg]
510	155	1015	165	6	157.5	77.5	15.0
625	155	1130	165	7	150	70	16.0
745	155	1250	165	8	145	65	17.0
875	155	1380	165	9	145	65	18.0
1005	155	1510	165	10	145	65	19.0
1130	155	1635	165	11	142.5	62.5	20.0
1260	155	1765	165	12	142.5	62.5	21.0
1390	155	1895	165	13	142.5	62.5	22.0
1520	155	2025	165	14	142.5	62.5	23.0
1650	155	2155	165	15	142.5	62.5	24.0
1780	155	2285	165	15	207.5	127.5	25.0
1905	155	2410	165	17	140	60	26.0
2035	155	2540	165	17	205	125	27.0
2165	155	2670	165	19	140	60	28.0
2295	155	2800	165	19	205	125	29.0
2425	155	2930	165	21	140	60	30.0

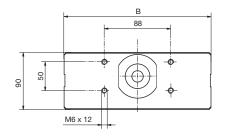
LINE TECH positioning units


PE 2 with belt drive and expansion bellow (reversing drive)



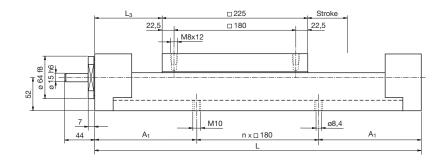
Nominal size	e	Dimension	s			
Stroke	В	L	L ₃	n	A_1	Weight
[mm]		[mm]				[kg]
1000	155	1620	205	11	95	20.0
1100	155	1740	215	12	90	21.0
1200	155	1870	230	13	90	22.0
1300	155	2000	245	14	90	23.0
1400	155	2130	260	15	90	24.0
1500	155	2315	302.5	17	52.5	25.0
1600	155	2385	287.5	17	87.5	26.0
1700	155	2570	330	19	50	27.0
1800	155	2645	317.5	19	87.5	28.0
1900	155	2830	360	21	50	29.0
2000	155	2915	352.5	21	92.5	30.0
2100	155	3090	390	23	50	31.0
2200	155	3165	377.5	23	87.5	32.0
2300	155	3350	420	25	50	33.0
2400	155	3420	405	25	85	34.0
2500	155	3635	462.5	27	62.5	35.0
2600	155	3680	435	27	85	36.0
2700	155	3875	482	29	52.5	37.0
2800	155	3940	465	29	85	38.0
2900	155	4130	510	31	50	39.0
3000	155	4195	492.5	31	82.5	40.0

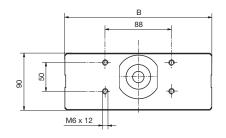

PE 2 with belt drive without expansion bellow (reversing drive)



Nominal s	size	Dimensio	ns			
Stroke	В	L	L ₃	n	A_1	Weight
[mm]		[mm]				[kg]
1040	155	1620	185	11	95	20.0
1160	155	1740	185	12	90	21.0
1290	155	1870	185	13	90	22.0
1420	155	2000	185	14	90	23.0
1550	155	2130	185	15	90	24.0
1735	155	2315	185	17	52.5	25.0
1805	155	2385	185	17	87.5	26.0
1990	155	2570	185	19	50	27.0
2065	155	2645	185	19	87.5	28.0
2250	155	2830	185	21	50	29.0
2335	155	2915	185	21	92.5	30.0
2510	155	3090	185	23	50	31.0
2585	155	3165	185	23	87.5	32.0
2770	155	3350	185	25	50	33.0
2840	155	3420	185	25	85	34.0
3055	155	3635	185	27	62.5	35.0
3100	155	3680	185	27	85	36.0
3295	155	3875	185	29	52.5	37.0
3360	155	3940	185	29	85	38.0
3550	155	4130	185	31	50	39.0
3615	155	4195	185	31	82.5	40.0

PE 3 with screw drive or pneumatic cylinder and expansion bellow

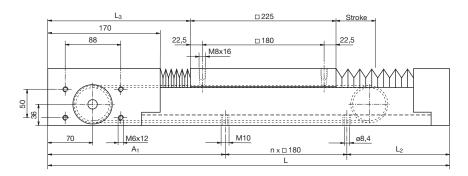




Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A ₁	Screw length	Weight
[mm]		[mm]					[kg]
50	225	405	65	1	112.5	429	17.5
100	225	470	72.5	2	55	494	19.0
150	225	540	82.5	2	90	564	20.5
200	225	605	90	2	122.5	629	22.0
250	225	675	100	3	67.5	699	23.5
300	225	745	110	3	102.5	738	25.5
350	225	810	117.5	3	135	798	27.0
400	225	880	127.5	4	80	857	28.5
450	225	950	137.5	4	115	916	30.0
500	225	1015	145	5	57.5	975	31.5
600	225	1150	162.5	5	125	1094	35.0
700	225	1290	182.5	6	105	1212	38.0
800	225	1425	200	7	82.5	1330	41.5
900	225	1560	217.5	8	60	1449	44.5
1000	225	1695	235	8	127.5	1567	47.5
1200	225	1970	272.5	10	85	1804	54.5
1400	225	2240	307.5	11	130	2036	60.5
1600	225	2515	345	13	87.5	2273	67.0
1800	225	2800	387.5	15	50	2529	73.5
2000	225	3060	417.5	15	180	2747	79.5
2200	225	3330	452.5	17	135	2983	86.0
2400	225	3605	490	19	92.5	3220	92.5
2600	225	3885	530	21	52.5	3467	99.0
2800	225	4150	562.5	21	185	3694	105.5
3000	225	4420	597.5	23	140	3926	111.5

The drive solution "pneumatic cylinder" goes without the measurements of the shaft end and eccentric ring.

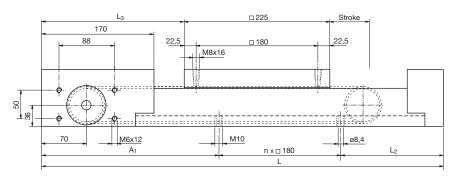
PE 3 with screw drive or pneumatic cylinder without expansion bellow

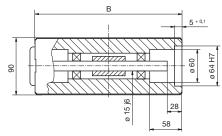




Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A ₁	Screw length	Weight
[mm]		[mm]					[kg]
40	225	405	70	1	112.5	429	17.5
105	225	470	70	2	55	494	19.0
175	225	540	70	2	90	564	20.5
240	225	605	70	2	122.5	629	22.0
310	225	675	70	3	67.5	699	23.5
380	225	745	70	3	102.5	769	25.5
445	225	810	70	3	135	834	27.0
515	225	880	70	4	80	904	28.5
585	225	950	70	4	115	974	30.0
650	225	1015	70	5	57.5	1039	31.5
785	225	1150	70	5	125	1174	35.0
925	225	1290	70	6	105	1314	38.0
1060	225	1425	70	7	82.5	1449	41.5
1195	225	1560	70	8	60	1584	44.5
1330	225	1695	70	8	127.5	1719	47.5
1605	225	1970	70	10	85	1994	54.5
1875	225	2240	70	11	130	2264	60.5
2150	225	2515	70	13	87.5	2539	67.0
2435	225	2800	70	15	50	2824	73.5
2695	225	3060	70	15	180	3084	79.5
2965	225	3330	70	17	135	3354	86.0
3240	225	3605	70	19	92.5	3629	92.5
3520	225	3885	70	21	52.5	3909	99.0
3785	225	4150	70	21	185	4174	105.5
4055	225	4420	70	23	140	4444	111.5

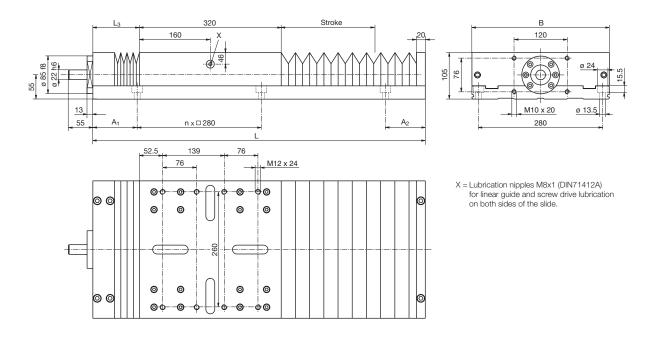
The drive solution "pneumatic cylinder" goes without the measurements of the shaft end and eccentric ring.


PE 3 with belt drive and expansion bellow



Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A ₁	L_2	Weight
[mm]		[mm]					[kg]
600	225	1355	310	6	202.5	72.5	36.5
700	225	1435	320	6	242.5	112.5	39.5
800	225	1555	330	7	212.5	82.5	42.5
900	225	1690	347.5	8	190	60	45.5
1000	225	1825	365	8	257.5	127.5	48.5
1100	225	1995	400	9	252.5	122.5	52.0
1200	225	2115	410	10	222.5	92.5	55.0
1300	225	2235	420	11	192.5	62.5	58.0
1400	225	2370	437.5	11	260	130	61.0
1500	225	2570	487.5	13	180	50	65.5
1600	225	2645	475	13	217.5	87.5	67.0
1700	225	2780	492.5	13	285	155	70.0
1800	225	2930	517.5	15	180	50	73.5
1900	225	3055	530	15	242.5	112.5	76.5
2000	225	3190	547.5	15	310	180	79.5
2100	225	3325	565	17	197.5	67.5	82.5
2200	225	3460	582.5	17	265	135	85.5
2300	225	3655	630	19	182.5	52.5	89.5
2400	225	3735	620	19	222.5	92.5	91.5
2500	225	3890	647.5	19	300	170	95.0
2600	225	4015	660	21	182.5	52.5	98.0
2700	225	4190	697.5	21	270	140	102.0
2800	225	4280	692.5	21	315	185	104.0
2900	225	4415	710	23	202.5	72.5	107.0
3000	225	4550	727.5	23	270	140	110.0

PE 3 with belt drive without expansion bellow



Nominal	size	Dimensi	ons				
Stroke	В	L	L ₃	n	A ₁	L_2	Weight
[mm]		[mm]					[kg]
755	225	1355	217.5	6	202.5	72.5	36.5
835	225	1435	217.5	6	242.5	112.5	39.5
955	225	1555	217.5	7	212.5	82.5	42.5
1090	225	1690	217.5	8	190	60	45.5
1225	225	1825	217.5	8	257.5	127.5	48.5
1395	225	1995	217.5	9	252.5	122.5	52.0
1515	225	2115	217.5	10	222.5	92.5	55.0
1635	225	2235	217.5	11	192.5	62.5	58.0
1770	225	2370	217.5	11	260	130	61.0
1970	225	2570	217.5	13	180	50	65.5
2045	225	2645	217.5	13	217.5	87.5	67.0
2180	225	2780	217.5	13	285	155	70.0
2330	225	2930	217.5	15	180	50	73.5
2455	225	3055	217.5	15	242.5	112.5	76.5
2590	225	3190	217.5	15	310	180	79.5
2725	225	3325	217.5	17	197.5	67.5	82.5
2860	225	3460	217.5	17	265	135	85.5
3055	225	3655	217.5	19	182.5	52.5	89.5
3135	225	3735	217.5	19	222.5	92.5	91.5
3290	225	3890	217.5	19	300	170	95.0
3415	225	4015	217.5	21	182.5	52.5	98.0
3590	225	4190	217.5	21	270	140	102.0
3680	225	4280	217.5	21	315	185	104.0
3815	225	4415	217.5	23	202.5	72.5	107.0
3950	225	4550	217.5	23	270	140	110.0

LINE TECH positioning units

PE 4 with screw drive and expansion bellow

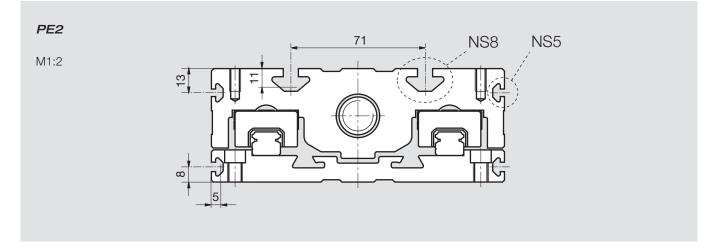
Nomina	l size	Dimens	ions					
Stroke	В	L	L ₃	n	A ₁	A_2	Screw length	Weight
[mm]		[mm]						[kg]
50	310	510	85	1	115	115	350	45
100	310	560	85	1	140	140	400	47
150	310	625	92.5	1	172.5	172.5	500	50
200	310	690	100	2	65	65	550	53
250	310	760	110	2	100	100	600	56
300	310	825	117.5	2	132.5	132.5	650	59
350	310	895	127.5	2	167.5	167.5	700	62
400	310	965	137.5	3	62.5	62.5	750	65
450	310	1030	145	3	95	95	800	68
500	310	1100	155	3	130	130	1151	71
600	310	1235	172.5	3	197.5	197.5	1286	77
800	310	1505	207.5	4	192.5	192.5	1556	89
1000	310	1750	230	5	175	175	1801	100
1200	310	2000	255	6	160	160	2051	111
1600	310	2495	302.5	8	127.5	127.5	2546	133
2000	310	2990	350	9	235	235	3041	156
2400	310	3485	397.5	11	202.5	202.5	3536	178
3000	310	4225	467.5	13	292.5	292.5	4276	211

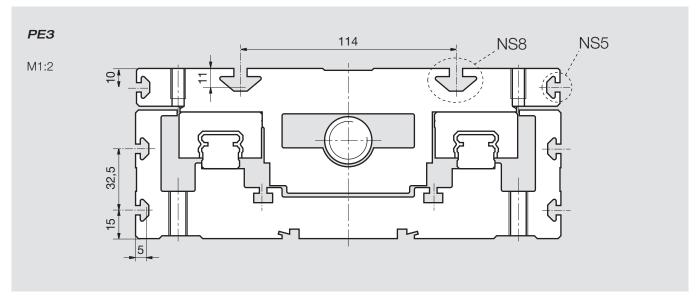
PE 4 with screw drive without expansion bellow

Nomina	l size	Dimens	ions					
Stroke	В	L	L ₃	n	A ₁	A_2	Screw length	Weight
[mm]		[mm]						[kg]
70	310	510	75	1	115	115	350	45
120	310	560	75	1	140	140	400	47
185	310	625	75	1	172.5	172.5	500	50
250	310	690	75	2	65	65	550	53
320	310	760	75	2	100	100	600	56
385	310	825	75	2	132.5	132.5	650	59
455	310	895	75	2	167.5	167.5	700	62
525	310	965	75	3	62.5	62.5	750	65
590	310	1030	75	3	95	95	800	68
660	310	1100	75	3	130	130	1151	71
795	310	1235	75	3	197.5	197.5	1286	77
1065	310	1505	75	4	192.5	192.5	1556	89
1310	310	1750	75	5	175	175	1801	100
1560	310	2000	75	6	160	160	2051	111
2055	310	2495	75	8	127.5	127.5	2546	133
2550	310	2990	75	9	235	235	3041	156
3045	310	3485	75	11	202.5	202.5	3536	178
3785	310	4225	75	13	292.5	292.5	4276	211

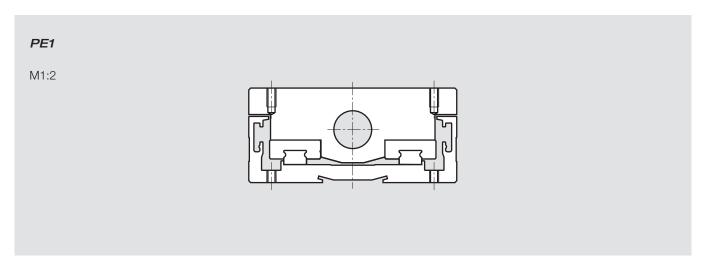
Grooves and Sliding blocs

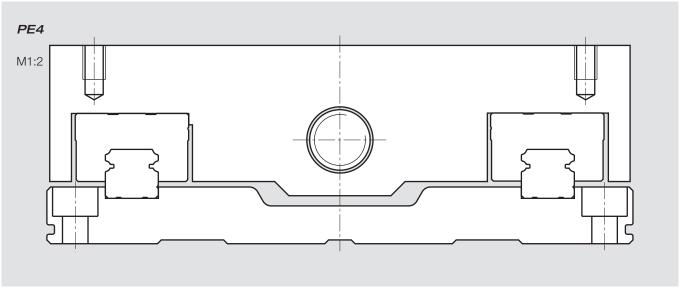
Grooves and Sliding blocs


The positioning units size 2 and 3 come with grooves in both base plate and slide. The location of the grooves is shown in picture 24. For the grooves at topside the NS8 type of sliding blocs have to be used, for the collateral grooves at the slide and the base plate the NS5 type. The maximum depth of thread is indicated in the picture 24.

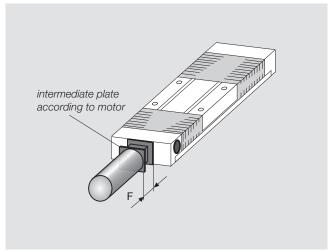

The positioning unit size 1 and 4 are not equipped with grooves at all.

The slide blocs can be purchased at LINE TECH. The order number must show the type, the material and the thread size, for instance NS5 St M5. The sizes available are shown in the table aside.

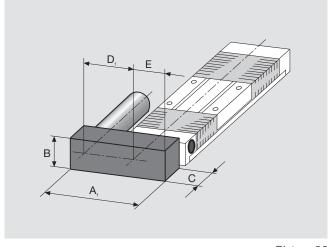

Bild 24 Groove design and location


	a		
Groove width [mm]	Dimension "a"	Material	Order number
5 8	M3 / M4 / M5 M4 / M5 / M6 / M8	St / Inox St / Inox Material Dim. "a" _	NS5 NS8
		Example:	NS5 St M5

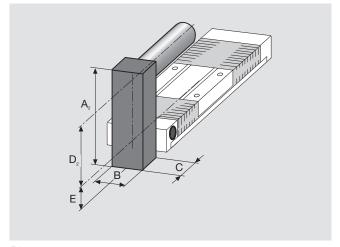
Profile cross-sections PE1 and PE4

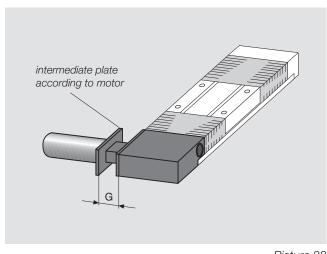

Dimensions motor mount

Dimensions motor mount

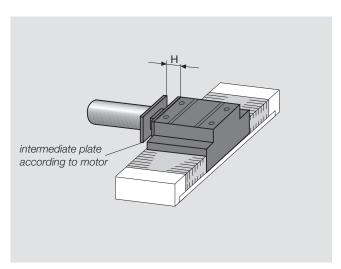

The principal measurements of the motor mount are described on this double-side page. The measurements shown in picture 26 to 30 are valid also for the respective axially symmetric versions (mount at left hand side or bottom).

The motor mount normally projects to the top and to the bottom (varying with the size of the motor and the positioning unit).

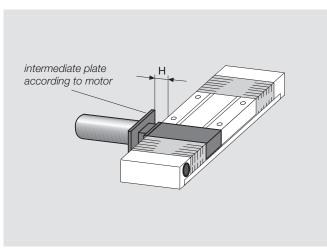

Nom.	Dime A, [mm]	ensior A ₂		С	$D_{_1}$	$D_{\!\scriptscriptstyle 2}$	E	F	G	Н
PE 1	220	220	90	50	130	130	45	45	_	_
PE 2	300	300	120	70	178	178	66	65	*	*
PE 3	350	350	120	70	228	228	66	80	_	_
PE 4	490	380	230	68	298	189	115	120	_	_
* related to the type of motor										


Picture 25 Screw drive with coupling and intermediate plate

Picture 26 Screw drive with right hand side mounted motor



Picture 27 Screw drive with motor mount topside



Picture 28 Belt drive right hand side

Dimensions motor mount

Picture 29
Reversing belt drive right hand side

Picture 30 Rack gear drive right hand side

Table of content	page/s
- Basic design / Lubrication / Maintenance	40
- Designation system	41
- Cross tables	42/43
- Selection evidence:	
- Execution, Stroke, Expansion bellow	
- Drive	
- Limit switch	
- Mounting conditions, Reduction, Drive mounting	52/53
- Technical data:	
- Load rate, Torque, Area momentum, Rigidity	54
- Dimensions of the integral axle CP2:	
- with screw drive and integrated motor	55
- with screw drive and motor on endplate	56
- with screw drive and free shaft end	57
- Profile cross-section	58
- Dimensions motor mount	59

Basic design / Lubrication / Maintenance

LINE TECH integral axles

LINE TECH integral axles are of modular conception, ready to built-in linear slide units with drive.

Everywhere sealed guiding elements are used. For the power transmission, preferably rolled or ground ball screws as well as satellite roller screws but also toothed belts, high-helix lead screws "Speedy" and rod-less pneumatic cylinders are available.

The guidance as well as the transmission elements are protected against external contamination such as dirt, dust and others by a steel strapping.

The base plate and the slide body are made of extrusion molded alloy.

In the base plate integrated limit switches allow, in conjunction with the motor and the control unit, for the perfect positioning and prevent against overrunning of the slide.

The design chosen allows for a very high performance at most compact dimensions.

Lubrication

LINE TECH integral axles are pre-lubricated with "Microlube GBU Y 131". This quality grease offers outstanding properties for the guidance- and screw drive elements.

Depending on the specific requirements and the environmental condition, the unit shall be re-greased regularly. As an average, the re-greasing should be done every 500 running hours.

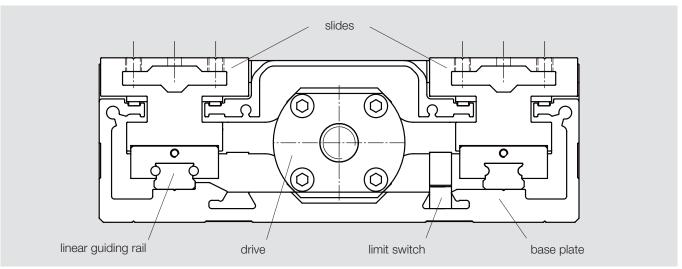
The guiding rails and the screw can be greased through the three lateral mounted lubricator nipples at the slide (see picture 31).

All roller bearings installed have for-life lubrication and therefore do not need any maintenance.

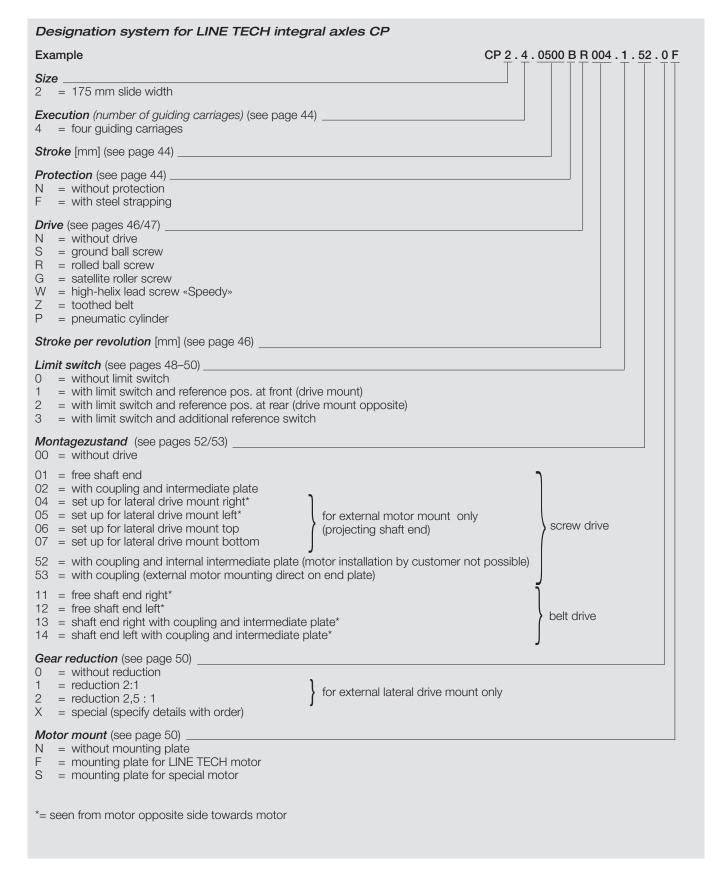

Correct and regular re-greasing can remarkably prolong the equipments life cycle.

Maintenance

LINE TECH integral axles are in general maintenance-free. Depending on the application however, it is recommended to remove once in a while the steel strapping in order to clean and to check the axle (especially in case of very small machining-residuals).


Service temperature

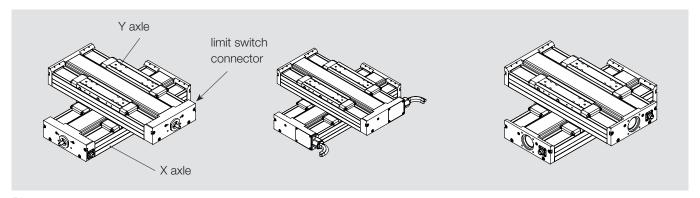
The allowed service temperature of 80° C is given by the composites installed. For the drives and controls refer to the specific publication.



Picture 31 Position of lubrication nipples

Picture 32: Design

Designation system

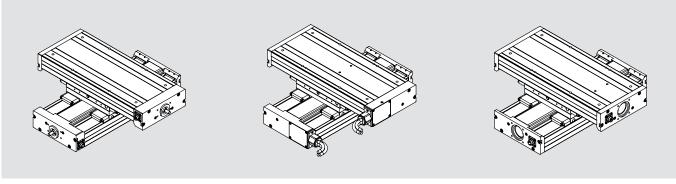


Cross tables

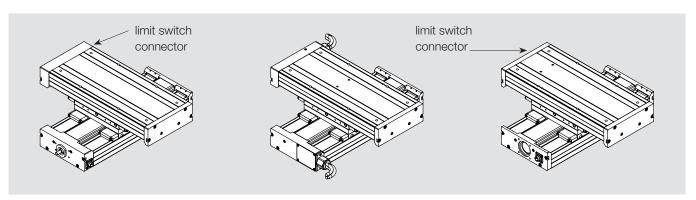
Cross tables

LINE TECH integral axles are also available as two axle units (cross table). At this, the designation system as shown beside and based on the designation system of page 41, is to be used. There are totally four configurations possible. The correlation between the limit switch connector (black point) and the position of the drive (shaft end) will be shown on pages 52–53.

Designation system for cross table mounting	
Example: KI	M . CP2 / CP2 . AC
Cross mounting	
Symbol of the integral axle of the lower axle	
Symbol of the integral axle of the upper axle	
Mounting layout (see pictures 32–35)	
Cross table mountings of AC and AD layout are free of charge. The mounting layout BC and BD need an intermediate plate and ject to a surcharge.	d therefore are sub-
The standard precision for cross table mounting: 0.1mm / 300n Higher precision on request.	nm stroke.
The individual integral axles must be ordered separately.	



Picture 32 Mounting layout: AC



Picture 33 Mounting layout: AD

Cross tables

Picture 34
Mounting layout: BC

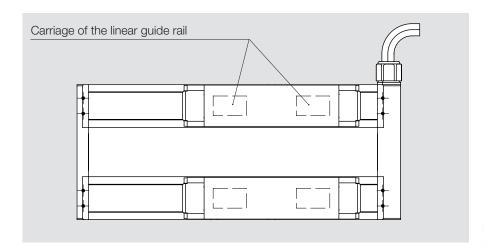
Picture 35 Mounting layout: BD

Selection notice

The selection notices take into account the various order options in details and are structured analog to the designation system. Thus permitting the optimal choice of the integral axle meeting best your specific requirements.

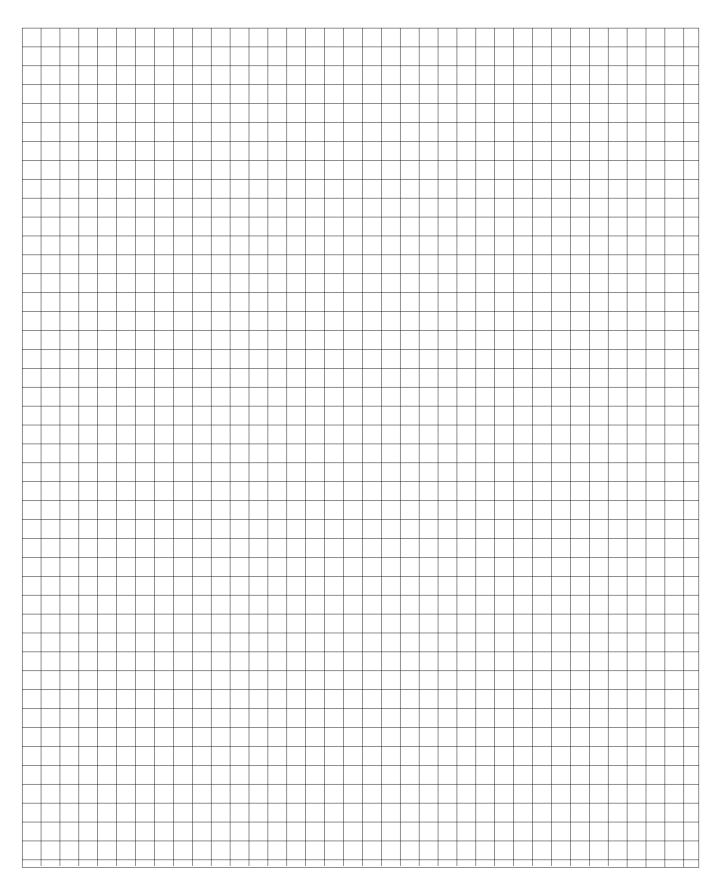
Execution

All sizes of the LINE TECH integral axles are each equipped with two guiding rails and four guiding carriages (picture 36). This guiding system meets all standard-requirements regarding load capacity ad precision.


In case of any higher requirements (rigidity, torque, load rate) it is possible to install linear guide rails with a higher pre-load.

Stroke

Thanks to a most flexible manufacturing process, customer requirements for stroke length beyond the standard program can be fulfilled. However, it shall be taken into consideration that the maximal stroke length is related to the chosen drive type (see page 46/47). In case of the overall length of the positioning unit exceeding 6000 mm the base plate will be compound of more then one. However, this goes without any consequence to the hole pattern.


Protection

For the dirt protection of the bearing and drive, the integral axles are equipped with steel strapping.

Picture 36
Standard execution

Notes

Drive

In order to facilitate the selection of the best drive solution, you'll find hereafter the different possibilities and their characteristics. By this, the different arrangements can be compared and the solution ideally meeting the customer requirements being determined. In case of higher requirements to the integral axle please contact the customer support at LINE TECH.

Drive	Size	Execution ¹⁾ diam. x pitch [mm]	Stroke [mm]	Positioning accuracy [µm/mm]
Ball screw	CP 2	rolled 12x4 16x5, 16x10	≤ 1200 ≤ 1800	< 60/300 < 52/300 / < 25/300 ²⁾
Satellite roller screw	CP 2	on request		
High-helix lead screw «Speedy»	CP 2	on request		
Toothed belt	CP 2	on request		
Pneumatic cylinder	CP 2	on request		

¹⁾ additional executions on request

²⁾ on request

Repeating accuracy [+/- mm]	Reversal backlash [mm]	Speed max. [m/s]	Acceleration max. [m/s²]	Axial load rate C _{dyn} [N]	e C _o
< 0,02 < 0,01	0,02 0,02	3)	10 10	4400 6950	1750 3400

 $^{^{3)}}$ depending upon the length of the spindle and the critical speed respectively (see pages 62/63)

Limit switches

The limit switches are used in conjunction with a control unit to limit the stroke (prevent overrunning of the carriage) and to define the reference position. The widely used and LINE TECH standard inductive limit switches are of the PNP-break contact type and show the following characteristics:

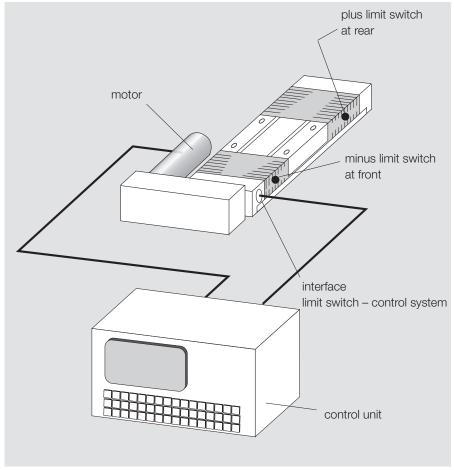
Supply: 10...30 VDC

Current consumption off-load: < 10 mA

Load: max. 200 mA

Mechanical switch-ratio: < 0.4mm

On request the following non standard limit switches are available:

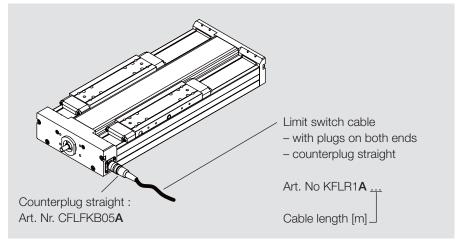

- PNP-make type (PNP-NO)
- NPN-break type (NPN-NC)
- NPN-make type (NPN-NO)

The LINE TECH product range includes continuous and linear path control systems as well as step motors, AC and DC servo drives. The individual components are tuned together and complete LINE TECH elements to custom made positioning systems.

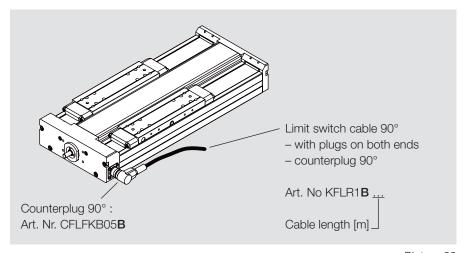
Fitting of the limit switches

The fitting position of the limit switches is shown in picture 37. The reference position can be allocated either to the plus (+) or to the minus (-) limit switch. Special applications often require a separate reference position switch which will be, upon customer definition, located between the plus- and minus limit switch. The limit switch mounted closer to the drive (electrical motor) is named the front or forward limit switch.

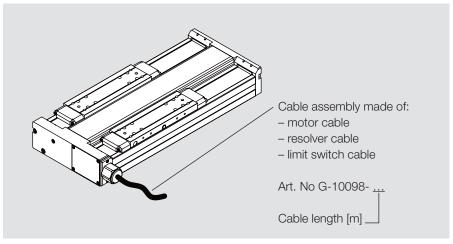
Bild 37 Einbaulage der Endschalter


Limit switch counterplugs and cables

Limit switch-counterplugs and cables are not included in the delivery. However they can be ordered separately. Counterplugs are available as straight


Counterplugs are available as straight and right angle plugs (see pictures 38 and 39).

Cable assembly


For integral axles with built-in motor (mounting condition 52) a cable assembly (picture 39) is available. This cable assembly fits to the servo controller "Servostar 400" and "Servostar 600" of Danaher Motion.

Picture 38
Counterplug straight with cable

Picture 39 Counterplug 90° with cable

Picture 40 Cable assembly for built-in motor (mounting condition 52)

Connector plug

The pin assignment for the standard limit switch is shown in the schemas 8a and 8b. The individual pins are assigned as follows:

Pin 1 minus (-) direction (load)

Pin 2 OV (GND)

Pin 3 plus (+) direction (load)

Pin 4 +10...30 VDC Pin 5 reference (load)

Color-code legend to the schemas 41a and 41b:

Load = black +VDC = brown 0V (GND) = blue

Assembly condition

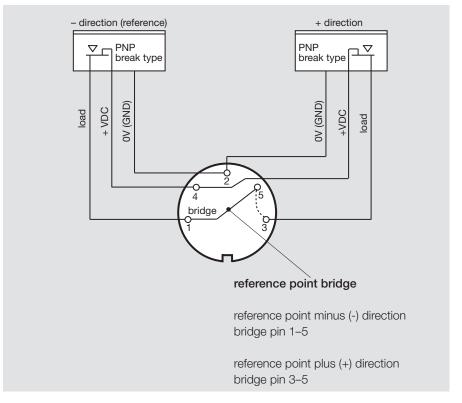
The different assembly conditions are shown on pages 52 and 53.

Reduction / multiplication

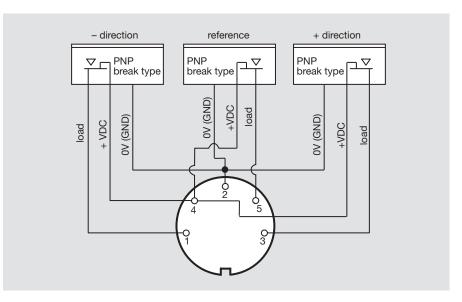
On request, for the screw drive solution with lateral motor mounting the speed (rpm) can be reduced or multiplied at a 2:1 or 2.5:1 ratio.

Motor mounting

LINE TECH offers a wide range of motors tuned to the positioning units. Furthermore, the installation of special motors according to the customer specification is possible.

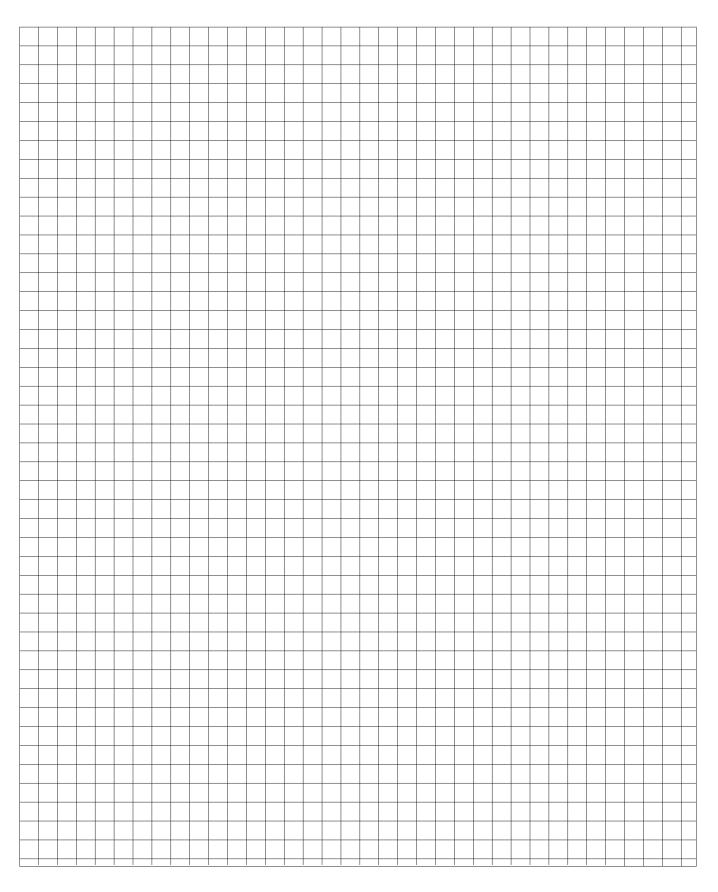

Specifications for built-in motor

(Mounting condition 52)


Nominal speed = 4000 min^{-1} Nominal torque = 0.3 Nm

Suitable servo controllers:

"Servostar 400" and "Servostar 600" from Danaher Motion.

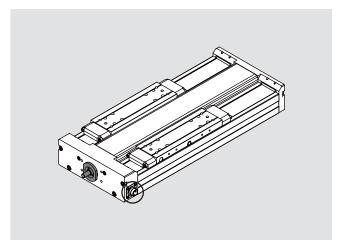


Schema 41a Connector plug with integrated reference switch

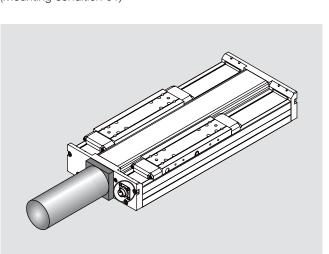
Schema 41b Connector plug with separate reference switch

Notes

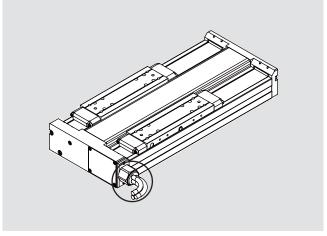
Mounting condition

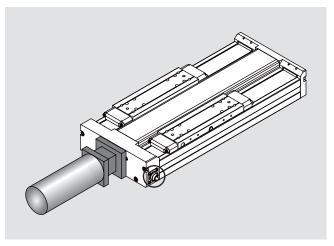

The positioning units can be supplied in different configurations (pictures 42-49).

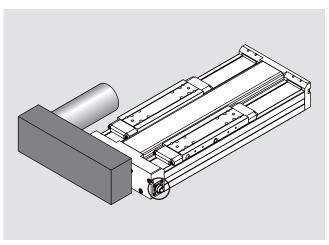
Depending on the drive solution, different executions are being offered as a standard.

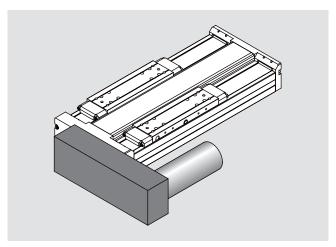

The difference between left- and right hand mounting condition is given by the position of the limit switch connector plug. The respective location is marked in the pictures 42-49.

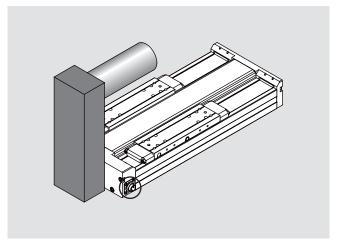
= connector plug limit switch (interface limit switch control)

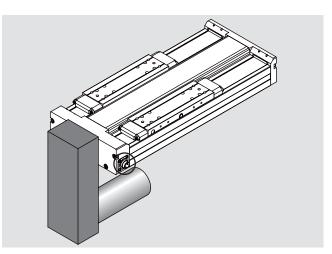

Dimensions see page 59.


Picture 42: free shaft end (Mounting condition 01)


Picture 44: motor mounted direct on end plate (Mounting condition 53)


Picture 43: built-in motor (Mounting condition 52)


Picture 45: screw drive with coupling and intermediate plate (Mounting condition 02)


Picture 46: screw drive with lateral motor mount at right hand side (Mounting condition 04)

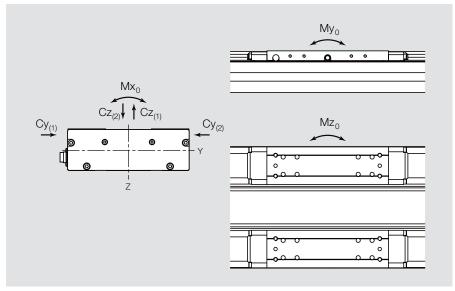
Picture 47: screw drive with lateral motor mount at left hand side (Mounting condition 05)

Picture 48: screw drive with lateral motor mount at left top side (Mounting condition 06)

Picture 49: screw drive with lateral motor mount at the buttom (Mounting condition 07)

Technical data

Load rate

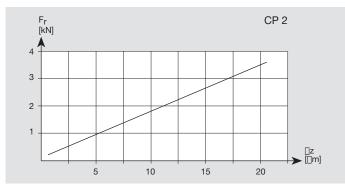

The load rate is given by the guiding system. Considering the requested life time we recommend to apply max. 20% of the dynamic load rate to the unit.

Torque

Also for the torque, the values are determined by the execution of the guiding system. Picture 50 shows the directions of possible torque application.

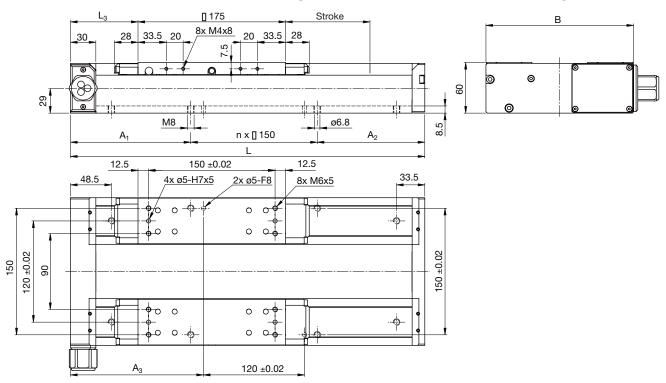
Area momentum

For integral axles the maximum allowed deflection angle is of 5'. This value being exceeded will have an impact on the unit's life-cycle.

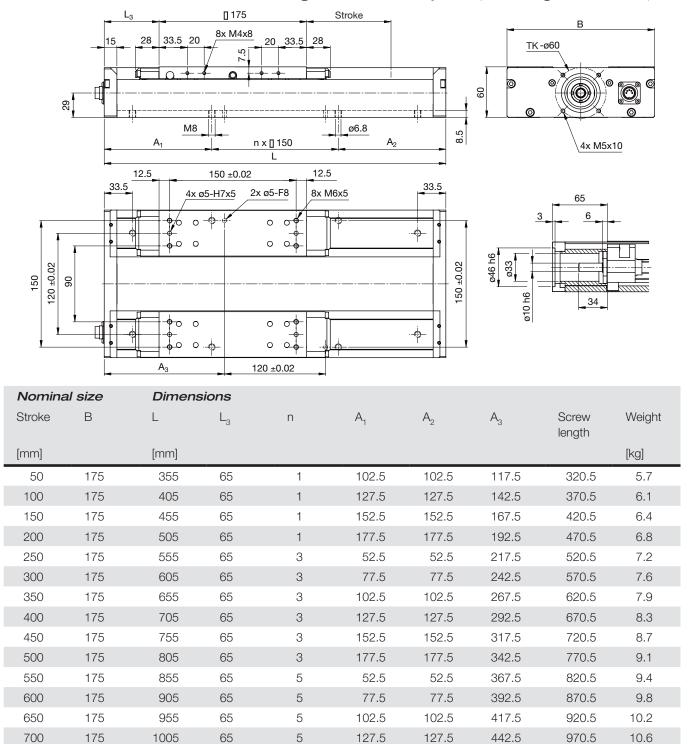

Picture 50: Torques

Туре		Load radynam Cy _(1,2) [kN]		Torques dynami Mx ₀ [Nm]		Mz _o	Load ratestatic Cy _{0 (1,2)} [kN]	tes $Cz_{0(1)}$	Cz _{0 (2)}	Torques static Mx ₀ [Nm]	My ₀	Mz ₀	Area momen ly _s [cm ⁴]	itum Iz _s
CP2	.4	15.2	15.2	914	823	823	22.3	22.3	22.3	1341	1207	1207	28.1	797.3

* recommended load of a integral axle < 20% of the dynamic rate


Rigidity

The values for the rigidity refer to the guiding rail only without considering the environmental condition; they are shown in the diagram in picture 51.


Picture 51: Rigidity

with screw drive and integrated motor (optional) (mounting condition 52)

Nomina	al size	Dimens	sions						
Stroke	В	L	L ₃	n	A ₁	A_2	A_3	Screw length	Weight
[mm]		[mm]							[kg]
50	175	370	80	1	117.5	102.5	132.5	255.5	6.8
100	175	420	80	1	142.5	127.5	157.5	305.5	7.2
150	175	470	80	1	167.5	152.5	182.5	355.5	7.5
200	175	520	80	1	192.5	177.5	207.5	405.5	7.9
250	175	570	80	3	67.5	52.5	232.5	455.5	8.3
300	175	620	80	3	92.5	77.5	257.5	505.5	8.7
350	175	670	80	3	117.5	102.5	282.5	555.5	9.0
400	175	720	80	3	142.5	127.5	307.5	605.5	9.4
450	175	770	80	3	167.5	152.5	332.5	655.5	9.8
500	175	820	80	3	192.5	177.5	357.5	705.5	10.2
550	175	870	80	5	67.5	52.5	382.5	755.5	10.5
600	175	920	80	5	92.5	77.5	407.5	805.5	10.9
650	175	970	80	5	117.5	102.5	432.5	855.5	11.3
700	175	1020	80	5	142.5	127.5	457.5	905.5	11.7
750	175	1070	80	5	167.5	152.5	482.5	955.5	12.0
800	175	1120	80	5	192.5	177.5	507.5	1005.5	12.4
850	175	1170	80	7	67.5	52.5	532.5	1055.5	12.8
900	175	1220	80	7	92.5	77.5	557.5	1105.5	13.2
950	175	1270	80	7	117.5	102.5	582.5	1155.5	13.5
1000	175	1320	80	7	142.5	127.5	607.5	1205.5	13.9
1100	175	1420	80	7	192.5	177.5	657.5	1305.5	14.7
1200	175	1520	80	9	92.5	77.5	707.5	1405.5	15.4
1300	175	1620	80	9	142.5	127.5	757.5	1505.5	16.2
1400	175	1720	80	9	192.5	177.5	807.5	1605.5	16.9
1500	175	1820	80	11	92.5	77.5	857.5	1705.5	17.7

with screw drive; for motor mounting direct on end plate (mounting condition 53)

750

800

850

900

950

1000

1100

1200

1300

1400

1500

175

175

175

175

175

175

175

175

175

175

175

1055

1105

1155

1205

1255

1305

1405

1505

1605

1705

1805

65

65

65

65

65

65

65

65

65

65

65

5

5

7

7

7

7

7

9

9

9

11

152.5

177.5

52.5

77.5

102.5

127.5

177.5

77.5

127.5

177.5

77.5

152.5

177.5

52.5

77.5

102.5

127.5

177.5

77.5

127.5

177.5

77.5

467.5

492.5

517.5

542.5

567.5

592.5

642.5

692.5

742.5

792.5

842.5

1020.5

1070.5

1120.5

1170.5

1220.5

1270.5

1370.5

1470.5

1570.5

1670.5

1770.5

10.9

11.3

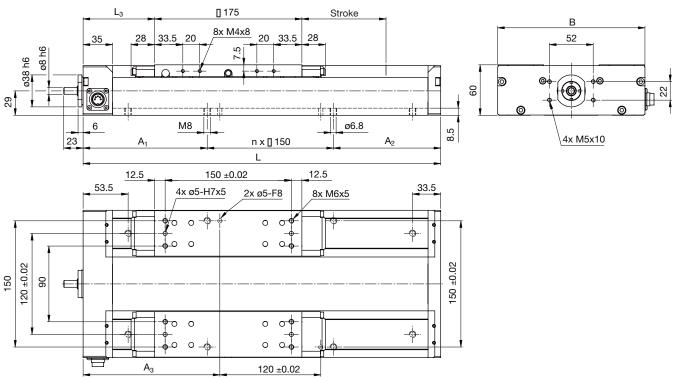
11.7

12.1

12.4

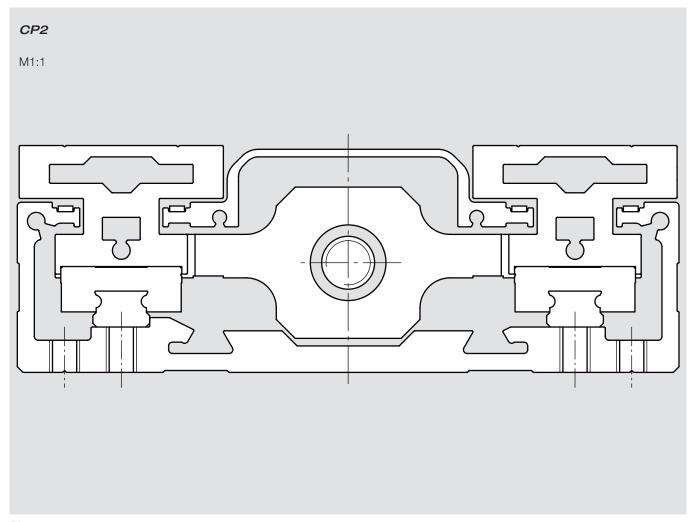
12.8

13.6


14.3

15.1

15.8


16.6

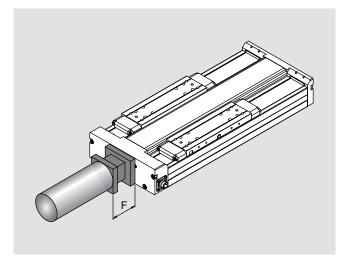
with screw drive and free shaft end (mounting condition 01)

Nomina	l size	Dimens	ions						
Stroke	В	L	L ₃	n	A ₁	A_2	A ₃	Screw length	Weight
[mm]		[mm]							[kg]
50	175	375	85	1	122.5	102.5	137.5	394.5	5.9
100	175	425	85	1	147.5	127.5	162.5	444.5	6.3
150	175	475	85	1	172.5	152.5	187.5	494.5	6.6
200	175	525	85	1	197.5	177.5	212.5	544.5	7.0
250	175	575	85	1	222.5	202.5	237.5	594.5	7.4
300	175	625	85	3	97.5	77.5	262.5	644.5	7.8
350	175	675	85	3	122.5	102.5	287.5	694.5	8.1
400	175	725	85	3	147.5	127.5	312.5	744.5	8.5
450	175	775	85	3	172.5	152.5	337.5	794.5	8.9
500	175	825	85	3	197.5	177.5	362.5	844.5	9.3
550	175	875	85	3	222.5	202.5	387.5	894.5	9.6
600	175	925	85	5	97.5	77.5	412.5	944.5	10.0
650	175	975	85	5	122.5	102.5	437.5	994.5	10.4
700	175	1025	85	5	147.5	127.5	462.5	1044.5	10.8
750	175	1075	85	5	172.5	152.5	487.5	1094.5	11.1
800	175	1125	85	5	197.5	177.5	512.5	1144.5	11.5
850	175	1175	85	5	222.5	202.5	537.5	1194.5	11.9
900	175	1225	85	7	97.5	77.5	562.5	1244.5	12.3
950	175	1275	85	7	122.5	102.5	587.5	1294.5	12.6
1000	175	1325	85	7	147.5	127.5	612.5	1344.5	13.0
1100	175	1425	85	7	197.5	177.5	662.5	1444.5	13.8
1200	175	1525	85	9	97.5	77.5	712.5	1544.5	14.5
1300	175	1625	85	9	147.5	127.5	762.5	1644.5	15.3
1400	175	1725	85	9	197.5	177.5	812.5	1744.5	16.0
1500	175	1825	85	11	97.5	77.5	862.5	1844.5	16.8

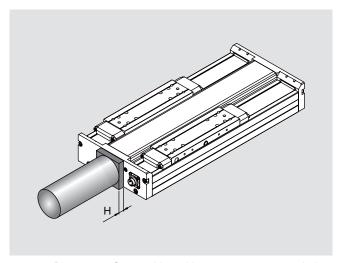
Profile cross-section

Picture 52
Profile cross-section of integral axle

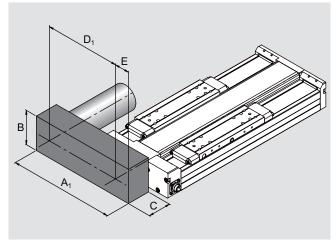
Dimensions motor mount

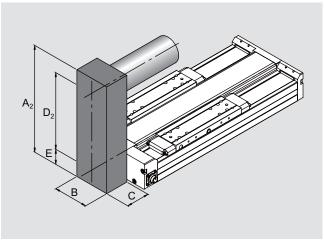

Dimensions motor mount

The principal measurements of the motor mount are described on this page. The measurements shown in pictures 53 to 56 are valid also for the respective axially symmetric versions (mount at left hand side or bottom).

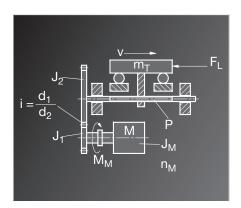

The motor mount normally projects to the top and to the bottom (varying with the size of the motor).

Nom. size			_	С	D ₁	$D_{\!\scriptscriptstyle 2}$	Е	F*	H*
CP2	300	300	120	70	178	178	66	*	*


^{*} related to the type of motor


Picture 53: Screw drive with coupling and intermediate plate (mounting condition 02)

Picture 54: Screw drive with motor mount at end plate (mounting condition 53)


Picture 55: Screw drive with lateral motor mount at right hand side (mounting condition 04)

Picture 56: Screw drive with lateral motor mount at top side (mounting condition 06)

LINE TECH design fundamentals

for positioning units and integral axles

Tabel of content	page/s
- Calculation guidelines	62–63
- Calculation examples	64–66

Calculation guidelines for positioning units and integral axles

Concept

The determination of service life must be calculated based on the respective documents of the linear guide system and the ball screw drives. Also for the drive belts we shall refer to the specific literature.

It is the linear guide or roller guide system which normally determines the service life. Therefore the following rules can be applied for a coarse definition:

Dynamic load

The nominal service life L_{10} L10 is being calculated from the dynamic load factor C_{dyn} [N] and the applied load F_r [N]:

$$L_{10} = \left(\frac{C_{dyn}}{F_{r}}\right)^{3}$$
 [10⁵ m run]

Static load

In case of only static load to be applied, the static index \mathbf{f}_{S} is being calculated in order to show that a unit with an ade-

quate load capacity has been selected. Taking into account the static load factor C_0 [N] and the load F_r [N] it results:

$$f_S = \frac{C_0}{F_r}$$

If $f_S \ge 1$, the safety margin is sufficient. If $f_S \le 1$, contact LINE TECH for further advise

Remark

The above formulas are applicable only in case all bearings are equally loaded, i.e. the load F is applied at the center of the cradle. Especially in vertical arrangements of the positioning units, the drive (screw or belt) must be checked. LINE TECH disposes of different test programs. If you provide us all the necessary information, we'll be pleased to assist you.

Definition of the drive motor

The drive motor forms the link between the control signal and the movement to be applied to a given load. Size and type of the drive motor primarily depend on the load, the required displacement speed and the acceleration factor. Calculation and choice of a positioning unit shall be based on the worst case service conditions.

For the optimal drive unit configuration, LINE TECH offers you different types of step-motors, DC and AC motors together with the appropriate continuous or linear path control.

To allow you the determination of the adequate drive motor for any specific application, always use the formulas and examples shown hereafter.

Key to the formulas at page 63:

d	[mm]	=	screw diameter
d_1	[mm]	=	diameter driving wheel
d_2	[mm]	=	diameter driven gear
d_3	[mm]	=	diameter pinion or belt pulley
F _i	[N]	=	feed power
i	[-]	=	gear reduction
J	[kgm ²]	=	mass moment of inertia
J_1	[kgm ²]	=	mass moment of inertia driving wheel
J_2	[kgm ²]	=	mass moment of inertia driven gear
J_{M}	[kgm ²]	=	mass moment of inertia drive motor
J_R	[kgm ²]	=	rotatory mass moment of inertia
J_{T}	[kgm ²]	=	translatory mass moment of inertia
1	[mm]	=	screw length
M_B	[Nm]	=	acceleration torque resp. breaking moment
M_d	[Nm]	=	motor – continuous torque (see motor spec.)
M_{eff}	[Nm]	=	motor – effective output torque

```
M,
         [Nm]
                     load moment
         [Nm]
                     motor torque (see motor spec.)
\mathrm{M}_{\mathrm{max}}
        [Nm]
                     motor torque peak
m_{\scriptscriptstyle T}
         [kg]
                  = external load (linear moving mass)
        [min<sup>-1</sup>] = critical speed for screw drive
n_{k}
         [min<sup>-1</sup>] = motor speed
n_{\rm M}
         [mm]
                   = screw pitch
P_{\!\scriptscriptstyle A}
        [W]
                      power output
        [mm]
                      acceleration / brake path
S_B
                      acceleration / braking period
        [s]
t_B
                  = running time under load moment
        [s]
t_L
t_0
        [s]
                  = stop period unloaded
        [m/s]
                  = rate of feed
        [-]
                     mechanical efficiency on motor shaft
η
```

Calculation guidelines for positioning units and integral axles

	$i = \frac{d_1}{d_2}$ M M_M N_M N_M N_M	$i = \frac{d_1}{d_2} J_2 m_T F_L$ $M_J M_J d_3$
Motor speed [min		$n_{M} = \frac{v \cdot 6 \cdot 10^{4}}{\pi \cdot d_{3} \cdot i}$
Critical speed [min]	
Load moment [Nr	2000 · π	$M_L = d_3 \cdot i \frac{F_L}{2000}$
Translatory mass moment [kgm of inertia	$J_{T} = m_{T} \left(\frac{p}{2 \cdot \pi}\right)^{2} \cdot 10^{-6}$	$J_{T} = m_{T} \left(\frac{d_{3}}{2}\right)^{2} \cdot 10^{-6}$
Rotatory mass moment [kgm of inertia (for steel)	$J_{R} = 7.7 \cdot d^{4} \cdot I \cdot 10^{-13}$	
Total of reduced mass moments [kgm of inertia	$J = J_{M} + J_{1} + i^{2}$ (at gear reduction 2)	
Acceleration torque resp. [Nr breaking moment $M_B = f(n_M)$	$M_{B} = \frac{n_{M} \cdot J}{9,55 \cdot t_{B}}$	
Acceleration torque resp. [Nr breaking moment $M_B = f(s_B)$	$M_{B} = \frac{4 \cdot \pi \cdot s_{B} \cdot J}{p \cdot i \cdot t_{B}^{2}}$	$M_{B} = \frac{4 \cdot s_{B} \cdot J}{d_{3} \cdot i \cdot t_{B}^{2}}$
Acceleration- / braking period $t_B = f(n_m)$	$t_{B} = \frac{n_{M} \cdot J}{9,55 \cdot M_{B}}$	
Acceleration- / braking period $t_B = f(s_B)$		$t_{B} = \sqrt{\frac{4 \cdot s_{B} \cdot J}{d_{3} \cdot i \cdot M_{B}}}$
Resulting speed (rpm) [min after acceleration		$n_{M} = \frac{120 \cdot s_{B}}{d_{3} \cdot \pi \cdot i \cdot t_{B}}$
Resulting distance of acceleration [mr	$S_{B} = \frac{n_{M} \cdot t_{B} \cdot p \cdot i}{120}$	$S_{B} = \frac{n_{M} \cdot t_{B} \cdot d_{3} \cdot \pi \cdot i}{120}$
Total of moments to override [Nr by the motor	$M_{M} = \frac{1}{\eta} (M_{L} + M_{B})$	
Power output [V	$P_{A} = \frac{M_{M} \cdot n_{M}}{9,55}$	
Effective output torque of motor [Nr	$M_{eff} = \sqrt{\frac{\Sigma \ t_{B} \ (M/M_{M})^2 \ + \ \Sigma \ t_{L} \ (M_{L}/M_{M})^2}{\Sigma \ t_{B} \ + \ \Sigma \ t_{L} \ + \ t_{0}}} \cdot \ M_{M}$	

LINE TECH design fundamentals

Calculation examples for positioning units and integral axles

Concept example

Positioning unit PE2·2·0200FR10·1·02·0F with ball screw drive 20x10

 $= 200 \, \text{mm}$ External load $m_{T} = 100 \text{ kg}$ $F_L = 500 N$ Screw length $= 533 \, \text{mm}$ Max. feed force v = 5 m/minThread pitch 10 mm Displacement speed Screw diameter 20 mm Acceleration time $t_{\rm B} = 0.05 \, \rm s$

Load cycle:

- total of all acceleration and break times $\Sigma t_B = 1 s$ $\Sigma t_i = 4 s$ - total running time at constant speed $t_0 = 1 s$ - downtime without load = 6 s- cycle time

Transmission:

Motor directly coupled to the screw

 $J_1 = 0.04 \cdot 10^{-3} \text{ kgm}^2$ Moment of inertia at coupling

 $M_{L} = \frac{p \cdot i \cdot F_{L}}{200 \cdot \pi} = \frac{10 \cdot 1 \cdot 500}{200 \cdot \pi} = 0.8 \text{ Nm}$ Load moment

Mass moments ot inertia:

 $J_T = m_T \left(\frac{p}{2\pi}\right)^2 \cdot 10^{-6} = 100 \left(\frac{10}{2\pi}\right)^2 \cdot 10^{-6}$ - translatory $= 0.254 \cdot 10^{-3} \text{ kgm}^2$

 $J_{R} = 7.7 \cdot d^{4} \cdot I \cdot 10^{-13} = 7.7 \cdot 20^{4} \cdot 533 \cdot 10^{-13}$ rotatory

 $= 0.066 \cdot 10^{-3} \text{ kgm}^2$

 $n_{M} = v \cdot \frac{6 \cdot 10^{4}}{p \cdot i} = \frac{5}{60} \cdot \frac{6 \cdot 10^{4}}{10 \cdot 1} = 500 \text{ min}^{-1}$ Rotational speed (motor speed)

 $n_{\rm M} \leq n_{\rm k} = 120 \cdot 10^6 \cdot {\rm d/l^2} = 120 \cdot 10^6 \cdot 20/533^2 = 8448 \, {\rm min^{-1}}$

If $n_M > n_k$, the speed must be reduced or the screw diameter and the thread pitch respectively be increased.

1. Motor concept for step motor

Number of full steps per revolution = 200 $= 1.8^{\circ}$ Step angle

 $= 10 \cdot \frac{1.8}{360} = 0.05 \,\mathrm{mm}$ at pitch p = 10 mm (without any screw fault)

At $n_M = 500 \text{ min}^{-1}$:

= 1667/sNumber of full steps Torque $M_d = 2.2 \text{ Nm}$

 $J_{M}^{-} = 0.13 \cdot 10^{-3} \text{ kgm}^2$ Mass moment of inertia

= $J_M + J_1 + i^2 \cdot (J_T + J_R) = (0.13 + 0.04 + 0.254 + 0.066) \cdot 10^{-3}$ = $0.49 \cdot 10^{-3} \text{ kgm}^2$ Total of red. mass moment of inertia

Calculation examples for positioning units and integral axles

Acceleration or break moment
$$M_{B} = \frac{500 \cdot 0,49 \cdot 10^{-3}}{9,55 \cdot 0,05} = 0,513 \text{ Nm}$$

Motor moment during acceleration
$$M_M = \frac{1}{0.8} (0.8 + 0.513) = 1.64 \text{ Nm}$$

Attention: for step motors watch the rpm-related torque

2. Motor concept for direct-current servo motor (DC servomotor)

In comparison to the two other motor types (step motor and AC servomotor) the DC motor shows a significant higher rotor-mass moment of inertia which asks for a higher acceleration moment.

At $n_{M} = 500 \text{ min}^{-1}$: Constant torque $M_d = 1,2 \text{ Nm}$

Peak torque $M_{max} = 8 Nm$ $J_{M}^{\text{111}} = 0.6 \cdot 10^{-3} \text{ kgm}^{2}$ Mass moment of inertia = $J_M + J_1 + i^2 (J_T + J_R) = (0.6 + 0.04 + 0.254 + 0.062) \cdot 10^{-3}$ = $0.956 \cdot 10^{-3} \text{ kgm}^2$ Total of red. mass moment of inertia $M_B = \frac{n_M \cdot J}{9,55 \cdot t_B} = \frac{500 \cdot 0,956 \cdot 10^{-3}}{9,55 \cdot 0,05} = 1 \text{ Nm}$ Acceleration or break moment $M_{M} = \frac{1}{n} (M_{L} + M_{B}) = \frac{1}{0.8} (0.8 + 1) = 2.25 \text{ Nm}$ Motor moment during acceleration

Thermal stress on the motor: for acceleration and break actions servomotors can be overstressed for a short period of time, if by doing so the root mean square value or the effective value of the motor nominal torque are not exceeded. At short load cycles with resulting high dynamic demands, the thermal stress of the motor shall be checked.

Ratio of the actual needed motor torque to the nominal motor torque:

- during acceleration
$$\frac{M_{\rm M}}{M_{\rm d}} = \frac{2,25}{1,2} = 1,875$$

- at constant speed
$$\frac{M_L}{M_d} = \frac{0.8}{1.2} = 0.667$$

Effective output torque of motor
$$\begin{aligned} \mathsf{M}_{\mathrm{eff}} &= \sqrt{\frac{\Sigma \ \mathsf{t_B} \ (\mathsf{M_M/M_d})^2 \ + \ \Sigma \ \mathsf{t_L} \ (\mathsf{M_L/M_d})^2}{\Sigma \ \mathsf{t_B} \ + \ \Sigma \ \mathsf{t_L} \ + \ \mathsf{t_0}}} \cdot \ \mathsf{M_d} \\ &= \sqrt{\frac{1 \ \cdot \ 1,875^2 \ + \ 4 \ \cdot \ 0,667^2}{1 \ + \ 4 \ + \ 1}} \cdot \ \mathsf{M_d} \\ &= 0,939 \ \cdot \ \mathsf{M_d} \end{aligned}$$

[→] the motor is thermally stressed at 94%.

LINE TECH design fundamentals

Calculation examples for positioning units and integral axles

3. Motor concept for synchronous servomotor (AC servomotor, brushless)

At $n_M = 500 \text{ min}^{-1}$:

Constant torque Peak torque

Mass moment of inertia

 $\begin{array}{lll} M_d & = & 1,25 \ Nm \\ M_{max} & = & 8 \ Nm \\ J_M & = & 0,11 \cdot 10^{-3} \ kgm^2 \\ J & = & J_M + J_1 + i^2 \ (J_T + J_R) \ = \ (0,11 + 0,04 + 0,254 + 0,062) \cdot 10^{-3} \\ & = & 0,47 \cdot 10^{-3} \ kgm^2 \end{array}$ Total of red. mass moment of inertia

 $M_B = \frac{n_M \cdot J}{9.55 \cdot t_B} = \frac{500 \cdot 0.47 \cdot 10^{-3}}{9.55 \cdot 0.05} = 0.49 \text{ Nm}$ Acceleration or break moment

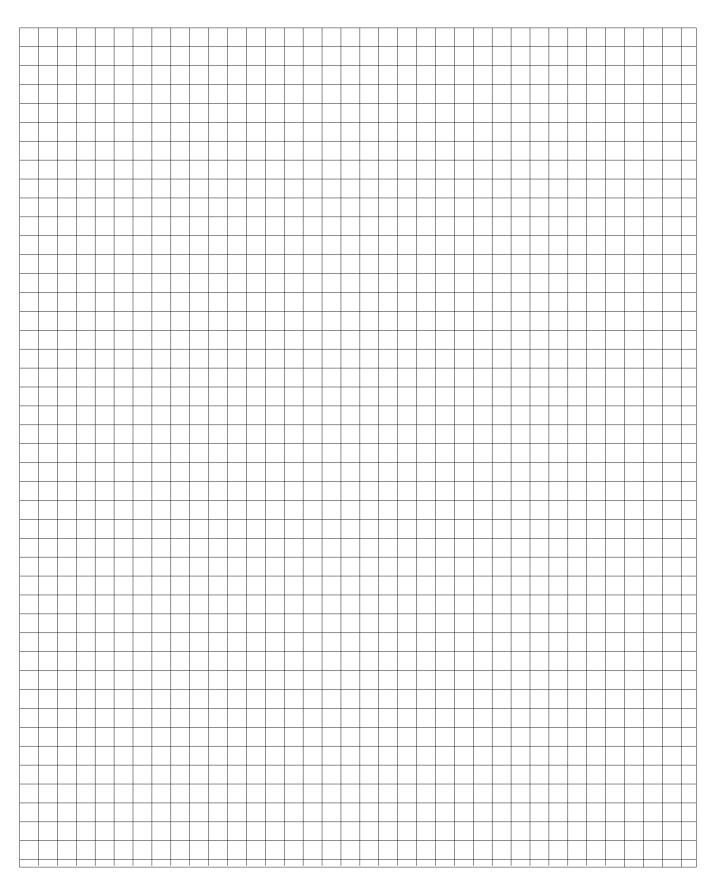
 $M_{M} = \frac{1}{n} (M_{L} + M_{B}) = \frac{1}{0.8} (0.8 + 0.49) = 1.61 \text{ Nm}$ Motor moment during acceleration

Thermal stress on the motor:

Ratio of the actual needed motor torque to the nominal motor torque

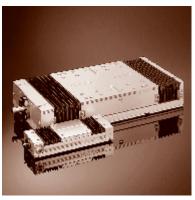
 $\frac{M_{M}}{M_{\odot}} = \frac{1,61}{1,25} = 1,288$ - during acceleration

 $\frac{M_L}{M_{\odot}} = \frac{0.8}{1.25} = 0.64$ - at constant speed

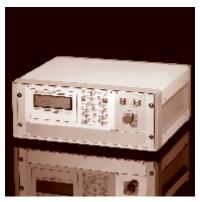

 $\mathsf{M}_{\mathsf{eff}} = \sqrt{\frac{\Sigma \ \mathsf{t}_{\mathsf{B}} \ (\mathsf{M}_{\mathsf{M}}/\mathsf{M}_{\mathsf{d}})^2 \ + \ \Sigma \ \mathsf{t}_{\mathsf{L}} \ (\mathsf{M}_{\mathsf{L}}/\mathsf{M}_{\mathsf{d}})^2}{\Sigma \ \mathsf{t}_{\mathsf{B}} \ + \ \Sigma \ \mathsf{t}_{\mathsf{L}} \ + \ \mathsf{t}_{\mathsf{O}}}} \cdot \ \mathsf{M}_{\mathsf{d}}$ Effective output torque of motor

$$= \sqrt{\frac{1 \cdot 1,288^2 + 4 \cdot 0,64^2}{1 + 4 + 1}} \cdot M_d$$

$$= 0,741 \cdot M_{d}$$


[→] the motor is thermally stressed at 74%.


Notes



Product range

The LINE TECH product range includes mechanical, electrical and electronic components which meet all the requirements of modern handling technology and special purpose machine building.

LINE TECH positioning units and LINE TECH linear modules – all built on a modular concept – are, due to their design features, dedicated for applications with high requirements on precision and performance. Various sizes and a multitude of drives allow for application specific problem solving.

LINE TECH controls and drives are specifically designed for single-axle and multi-axle positioning units. The wide range of products includes continuous-and linear path control systems as well as step motors, DC and AC servo motors and thus meeting any requirement of control systems.

LINE TECH has, beside the manufacture of components, specialized in the development of system solutions. It goes without saying that this includes the offer for commissioning by the LINE TECH customer service.

LINE TECH AG Europastrasse 19 CH-8152 Glattbrugg

Phone +41-(0)43 211 68 68 Fax +41-(0)43 211 68 69 info@linetech.ch www.linetech.ch

