

GCS SERIES
DIGITAL
READOUT
INSTRUCTION
BOOKLET

TWO AXIS DIGITED READOUT, THREE AXIS DIGITAL READOUT
EDM-DIGITAL READOUT

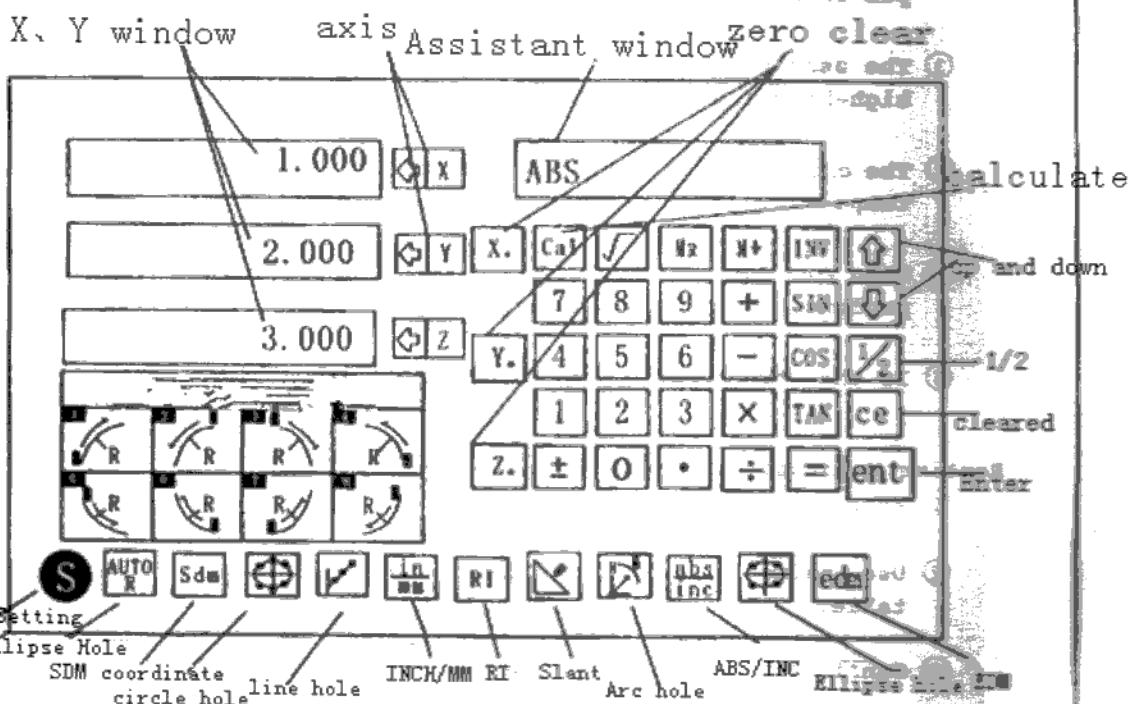
SHENZHEN HENGXINGXING PRECISION INSTRUMENTS CO.,LTD.

Dear User:

Welcome to use the Grating DataView System, the grating system is widely used in milling machine, grinding machine, lineCut, lathe, the applications can help us to advance produce efficiency, show frank intrititive, operation convenience, precision nicety, repeating stabilization, it's absolutely necessarily setting of the mould production, machine process, exactitude measuring .

Use the Grating DataView System, you aren't be fostered, follow the instruction of the booklet, you can use it very easily. it's fit to the newer, and can be used skilled by the older.",

Safety precautions:



Open the packing of the production, take out the Dataview table and anastomosisto the raster, then plug in to see if it's in gear.

- ① When you open the production, check-up the appearance is thru or not, if you find something at fault, contact to the company at once, be sure not to take down it.
- ② The setting used the alternating current of 110V~220V or 50Hz~60Hz, the electrical source bnc connector plugs pin is three core pin which has earthing feet.
- ③ The user be sure not to repair it proper motion, the table has high-handed piezoelectricit, avoid to do some damage to people.
- ④ The chassis is used by ABS plastic, it can't be used in the high temperature or defend burst entironment.
- ⑤ When you not use it, please turn off the electrical source. It can prolong the time of the product.
- ⑥ If the thunder storm comes, close the electrical source.

Routine Maintenance:

- ① When you clear the product, please turn off the power.
- ② Use the dry cloth or brush clean the defend crust or the data view table.
- ③ Can't cleanout the crust by toluene or ethanol.
- ④ The smear of the crust can be cleaned by detergent.

panel button instruction

List

Function project.....	5
Cleared	6
input Coordinate.....	6
INCH/MM	6
ABS/INC	8
1/2	9
RI.....	9
Radius/Diameter.....	10
Calculator.....	10
SDM(300 Group).....	10
Circle Hole.....	18
Ellipse Hole.....	22
Line Hole.....	26
Arc Hole.....	26
Smooth Arc	35
Slant	40
EDM	44
Basic parameters.....	46
Advanced Users.....	46
Grating displacement sensor.....	48
Grating displacement sensor's installation size.....	51
The Map.....	52
Trouble analyse and manage.....	53

prompt Grating Dataview Table, used nigh-tech electron technique, more function, operate easily, credibility durable. it's the necessary product of machine artifactitious.

One, Function item

1. Cleared

X. Y. Z.

2. Input coordinate

↙ X ↙ Y ↙ Z

3. INCH/MM

IN
MM

5. 1/2

ABS
INC

6. RI

1/2

7. High user settings

RI

8. Calculator

≡

9. SDM

CAL

10. Circle-Hole

SDM

11. Ellipse-Hole

○

12. Line-Hole

○

13. ARC-Hole

↙ ↘

14. Smooth

↓

15. Slant

AUTO
R

16. EDM

↖ ↗

17. Power cut memory

EDM

Two, nine core bnc connector jack and sense organ connect table

Feet size	1	2	3	4	5	6	7	8	9
Func tion	null	0v	null	null	null	signal	5V	signal	Zero signal

Clear

X.

Function: prompt operator and clear the coordinate at any place

eg: press X. → clear x

press Y. → clear y

press Z. → clear z

0.000	← X	ABS absolute
0.000	← Y	X.
0.000	← Z	Y.
		Z.

← X

input Coordinate

Function: prompt the operator and set the workpiece place to any data.

e.g: set the X to 45.8mm

Press in turn ← X 4 5 . 8 ent

45.800	← X	ABS absolute
0.000	← Y	X.
0.000	← Z	Y.
		Z.

(pour: when you input, the X data will glint)

IN
MM

INCH/MM

Function: prompt it can make the data switch between the mm and inch
Now the mm is 25.400, the inch is 1.0000

Operation steps

e.g 1: now the data is in inch ,we change it to mm.

1.000	<input type="button" value="← X"/>	ABS absolute
0.000	<input type="button" value="← Y"/>	
0.000	<input type="button" value="← Z"/>	
		X.
		Y.
		Z.

press

25.400	<input type="button" value="← X"/>	ABS absolute
0.000	<input type="button" value="← Y"/>	
0.000	<input type="button" value="← Z"/>	
		X.
		Y.
		Z.

e.g 2: now the data is in mm ,we change it to inch.

25.400	<input type="button" value="← X"/>	ABS absolute
0.000	<input type="button" value="← Y"/>	
0.000	<input type="button" value="← Z"/>	
		X.
		Y.
		Z.

press

1.000	<input type="button" value="← X"/>	ABS absolute
0.000	<input type="button" value="← Y"/>	
0.000	<input type="button" value="← Z"/>	
		X.
		Y.
		Z.

(Attention: at ABS/INC, SDM it can be switched als

ABS
INC

ABS/INC

function : prompt the dataview table provide two coordinate, they are ABS and INC.

1. The operator can memory the RI to ABS, and switch to INC for operationg..
2. Clear the INC coordinate at any place, the 1/2 can not affect the ABS coordinate.
3. at ABS coordinate the absolut value can autosave, and the operator can see it at any time.

Operation steps

e.g1: Switch the ABS to INC

press **ABS** **INC**

0.000	↶ X	ABS absolute
0.000	↶ Y	
0.000	↶ Z	
	X.	
	Y.	
	Z.	

0.000	↶ X	INC incremental
0.000	↶ Y	
0.000	↶ Z	
	X.	
	Y.	
	Z.	

Operation steps

e.g2: Switch the INC to ABS

press **X.**

0.000	↶ X	ABS absolute
0.000	↶ Y	
0.000	↶ Z	
	X.	
	Y.	
	Z.	

→

Operation steps

make the X to another side → press $\frac{1}{2}$ → press $\leftarrow X$ operate
RI → press **ABS INC** → move the machine tool to RI

$\frac{1}{2}$ midsplit autoly

Function: prompt at currently data press $\frac{1}{2}$ and move the machine tool to Zero.

e.g: set the X zero to the middle of the machine tool.

1. move the machine tool to one side, press $X.$
2. move the machine tool to another side, press $\frac{1}{2}$, and press $\leftarrow X$
3. move the machine tool to "0.000"

RI (Find RI)

Function: prompt set the size of Zero and RI

e.g: example for X

1. Clear the X at ABS, press $X.$
2. press **RI** → $\leftarrow X$
3. move the machine tool when it come by the RI

When power off, if you move the operation table, you can find the RI by the RI function when you open it next time

Press **RI** → $\leftarrow X$, move the machine table when it come by RI, the function window view **OK.....** and beep for "du-du". move the machine tool to "0.000".

CAL

Calculator

At everyday process, the most tool is calculator besides workpiece.

The Calculator of the provide the function for add, minus, multiply, divide and some function ,contains Sin , Cos, TAN.etc.

The Calculator function can move the result to the axis which you need to operate it, the operator just need move the machine tool to zero.the place is you needed.

For example: $123+76=199$ $6 \times 35=210$

Press

attention: 1. if you input error press to cancel

2. when you finished press , the result move to X

3. at calculator press move the data of X to calculator

SDM

300 Group

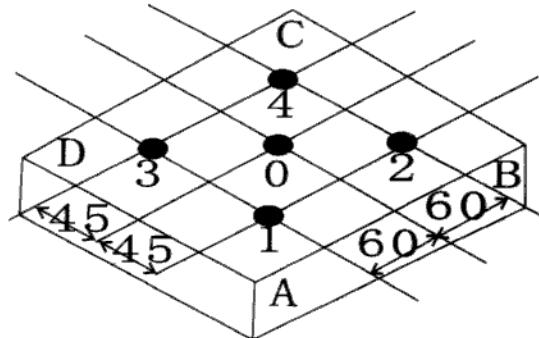
prompt the dataview table provide three

coordinates:ABS, INC, SDM (SDM0-SDM299). 300 Group user coordinate

can use to assistant zero in opeating.ABS is absolutent

coordinate.it's established at the begin,it used to be the datum

mark of processing workpiece.the SDM is defined relative to


absolutent coordinate..

operation steps

like pic, the origin of the ABS is in the center of the workpiece, there are

two method to set.

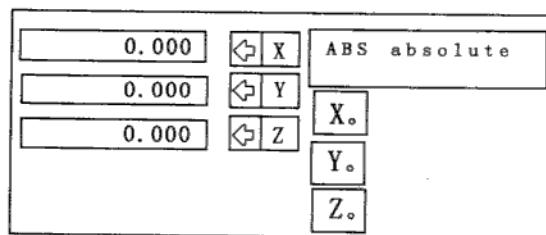
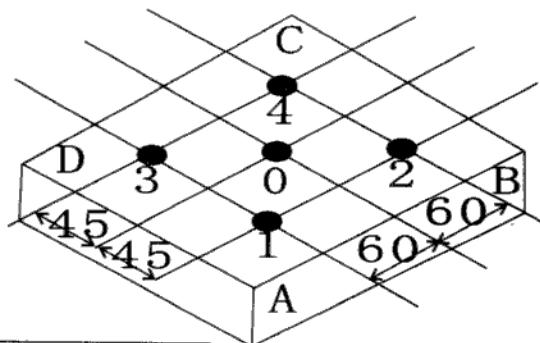
- ① To place clear zero
- ② Coordinate input

e.g 1: To place clear zero

set the workpiece zero to ABS zero. move the machine tool to SDM begin place and clear zero, when operating without reference to ABS or SDM, move the workpiece to "0.000".

Steps:

- (1) Follow the methods of the midsplit autoly, set the ABS begin to the rectangle centre, AB neat to the X.



AD neat to Y, aim at 0, ABS, X, Y clear near.

Sdm0 X, Y Clear Zero

Sdm1 X, Y Clear Zero

Sdm2 X, Y Clear Zero

Sdm3 X, Y Clear Zero

operation steps

- (1) Set the first point SDM ,enter the SDM coordinate, Clear X, Clear Y, move the machine tool to the first point. like pic.

60.000	X	SDM multi-group NO. 0 Total:300
45.000	Y	
0.000	Z	
		X.
		Y.
		Z.

press X. Y.

0.000	X	SDM multi-group NO. 0 Total:300
0.000	Y	
0.000	Z	
		X.
		Y.
		Z.

- (2) Set the first point SDM1 ,enter the SDM1 coordinate, Clear X, Clear Y, move the machine tool to the second point. like pic.

60.000	X	SDM multi-group NO. 1 Total:300
45.000	Y	
0.000	Z	
		X.
		Y.
		Z.

press X. Y.

0.000	X	SDM multi-group NO. 1 Total:300
0.000	Y	
0.000	Z	
		X.
		Y.
		Z.

Operation Steps

- (3) Set the first point SDM2 ,enter the SDM2 coordinate, Clear X, Clear Y, move the machine tool to the third point.like pic.

-	60.000	<input type="button" value="X"/>	SDM multi-group NO. 2 Total:300
-	45.000	<input type="button" value="Y"/>	
	0.000	<input type="button" value="Z"/>	
			X. Y. Z.

press

	0.000	<input type="button" value="X"/>	SDM multi-group NO. 2 Total:300
	0.000	<input type="button" value="Y"/>	
	0.000	<input type="button" value="Z"/>	
			X. Y. Z.

- (4) Set the first point SDM3 ,enter the SDM3 coordinate, Clear X, Clear Y, move the machine tool to the fourth point.like pic.

	60.000	<input type="button" value="X"/>	SDM multi-group NO. 3 Total:300
-	45.000	<input type="button" value="Y"/>	
	0.000	<input type="button" value="Z"/>	
			X. Y. Z.

press

	0.000	<input type="button" value="X"/>	SDM multi-group NO. 3 Total:300
	0.000	<input type="button" value="Y"/>	
	0.000	<input type="button" value="Z"/>	
			X. Y. Z.

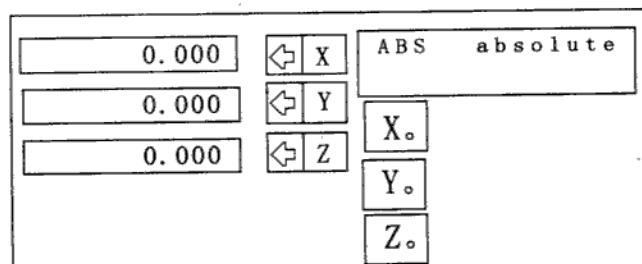
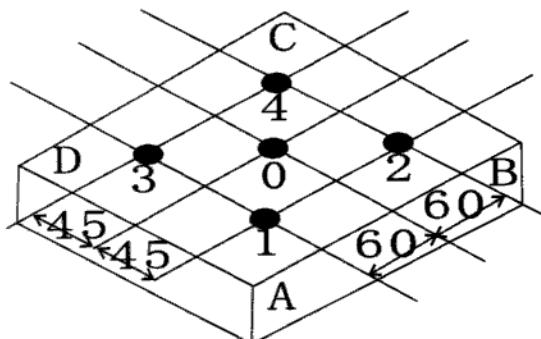
Operation Steps

(5) Process workpiece according to the coordinate

(6) Process workpiece which is the same to the previous workpiece, just set the ABS zero at "0.000", the SDM Zero have set

autoly, press and move the machine tool to zero.

2. Preset the SDM coordinate.



Use the method of preset zero, you needn't to move the machine tool, it can set the user's zero exactness and shortcut.

e.g: use the "0" mode input, like pic when the absoluteness coordinate is in zero, the 1 (60, -45), 2 (-60, -45), 3 (60, 45), 4 (-60, 45)

Operation steps

(1) In the ABS set the RI

Press

(2) Set the 1st zero, turn to the 1st zero SDM1.

press → →

Operation Steps

0.000	<input type="button" value="X"/>	SDM multi-group NO. 1 Total:300
0.000	<input type="button" value="Y"/>	X.
0.000	<input type="button" value="Z"/>	Y.
		Z.

(3) Input the 1st assistant zero coordinate straight

Press 6 0 → ent
press 4 5 ± → ent

60.000	<input type="button" value="X"/>	SDM multi-group NO. 1 Total:300
- 45.000	<input type="button" value="Y"/>	X.
0.000	<input type="button" value="Z"/>	Y.
		Z.

Set the 2nd zero,
turn to the 2nd zero SDM2.

0.000	<input type="button" value="X"/>	SDM multi-group NO. 2 Total:300
0.000	<input type="button" value="Y"/>	X.
0.000	<input type="button" value="Z"/>	Y.
		Z.

press

Input the 2nd assistant zero coordinate straight.

press → 6 0 ± → ent
press → 4 5 ± → ent

Operation Steps

60.000	← X	SDM multi-group NO. 2 Total:300
45.000	← Y	
0.000	← Z	X. Y. Z.

Set the 3rd zero,
turn to the 3rd zero SDM3.

press

0.000	← X	SDM multi-group NO. 3 Total:300
0.000	← Y	X. Y. Z.
0.000	← Z	

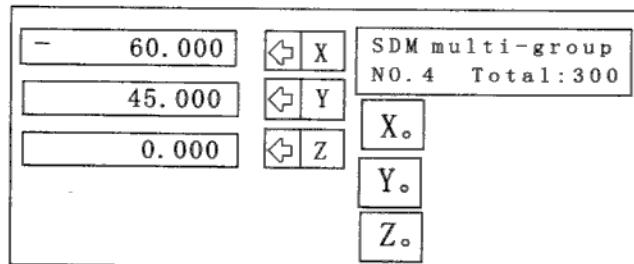
Input the 3rd assistant zero coordinate straight.

press 6 ent
press 4 ent

60.000	← X	SDM multi-group NO. 3 Total:300
45.000	← Y	
0.000	← Z	X. Y. Z.

Set the 4th zero

press


0.000	← X	SDM multi-group NO. 4 Total:300
0.000	← Y	X. Y. Z.
0.000	← Z	

Operation Steps

Input the 4th assistant zero coordinate straight

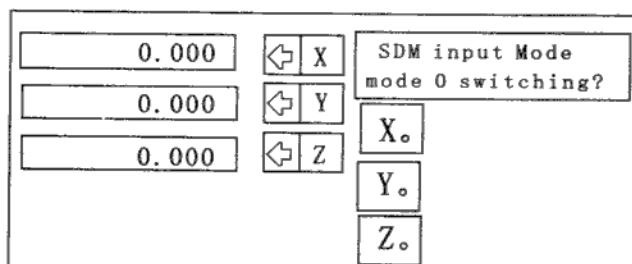
press X → 6 0 + → ent

press Y → 4 5 → ent

When the four assistant zero have been set, operator can press

to the assistant zero, and move the machine tool to zero,

it's the assistant zero, quit the SDM function ,you can press

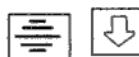

ABS
 INC

Switch SDM input mode:

When the SDM mode is "0", the data input is fact data.

When the SDM mode is "1", the data input is reverse data.

Eg.1 press → press


2 Press to select "0" mode or "1" mode, Press CE quit.

Operation Steps

SDM All clear away

The function is introduced: Eliminate consumer coordinate systemSDM300 Group The plain is interposed, Eliminate the queen, SDMCoordinate system has to demonstrate value and ABS coordinate system has to demonstrate value equality.

Operation step:

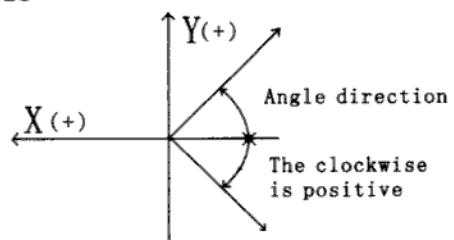
1. Press **ent** Key Enter the fundamental parameter Press
Choice arrives at "Clear SDM multiunit coordinate"

Press **ent**

0.000	<input type="button" value="X"/>	Clear SDM axis Press UP or DOWN
0.000	<input type="button" value="Y"/>	X.
0.000	<input type="button" value="Z"/>	Y.
		Z.

2. When right window display "OVER", Press **CE** for exit.

Circumference be allotted a hole


Function: The obvious form of number provides the convenient circumference halving hole function , Person requires operation to import

The circumference radius

The circumference initiation angle

The circumference termination angle

The halving hole number

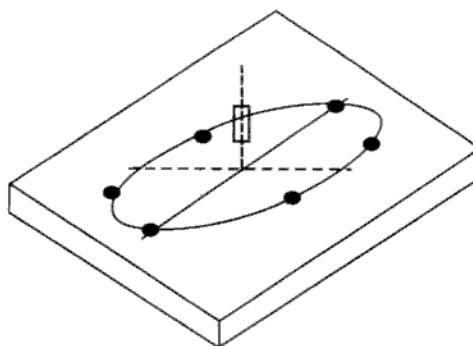
is pointed out

On the circumference the obvious form of number is calculated out just voluntarily, every divides the hole location from the middle , Every hole location is set up for zero, Person needs operation press

or

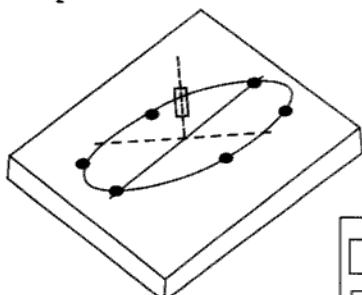
,Which and then the upper

hole choosing to the circumference, the machine tool working table is swayed to zero , is the location being a hole's turn.


Operation Steps

eg. Radius: 30mm

Initiation angle: 30°


End an angle: 318°

Divide the hole number
from the middle: 6

Operation Steps:

1. he central point location X=0,Y=0,press enter the circle split.

<input type="text"/>		Circle dispart Input Radius....
<input type="text" value="50.000"/>		X.
<input type="text"/>		Y.
		Z.

2. input the radius (R: 30)

press Operation Steps

Circle dispart
Input Radius....

50.000

X.
Y.
Z.

In the first place radius interposing

Circle dispart
Input Radius....

30.000

X.
Y.
Z.

3. Import the initiation angle

press 3 0 ent

Circle dispart
Input Incept Angle..

45.000

X.
Y.
Z.

In the first place initiation angle interposing

Circle dispart
Input The End Angle

30.000

X.
Y.
Z.

4. Import the termination angle

Press 3 1 8 ent

Operation Steps

<input type="text"/>	<input type="button" value="X"/>	Circle dispart
<input type="text" value="8.000"/>	<input type="button" value="Y"/>	Input The End Angle
<input type="text"/>	<input type="button" value="Z"/>	X _o
		Y _o
		Z _o

In the first place initiation angle interposing

<input type="text"/>	<input type="button" value="X"/>	Circle dispart
<input type="text" value="318.000"/>	<input type="button" value="Y"/>	Input The Most NO..
<input type="text"/>	<input type="button" value="Z"/>	X _o
		Y _o
		Z _o

5. Import the maximal hole number (Hole number)

press **6** **ent**

<input type="text"/>	<input type="button" value="X"/>	Circle dispart
<input type="text" value="5.000"/>	<input type="button" value="Y"/>	Input The Most NO..
<input type="text"/>	<input type="button" value="Z"/>	X _o
		Y _o
		Z _o

In the first place Maximal hole number interposing

<input type="text"/>	<input type="button" value="X"/>	Circle bore
<input type="text" value="6.000"/>	<input type="button" value="Y"/>	Hole NO: 1
<input type="text"/>	<input type="button" value="Z"/>	X _o
		Y _o
		Z _o

Enter treating directly, If treating is finished, press exit

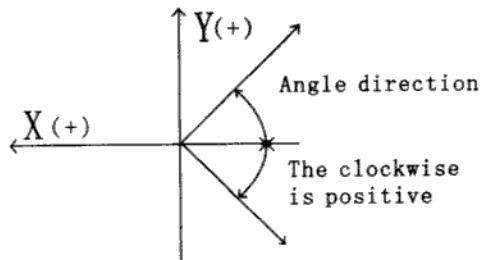
attention:

1. Process the queen in entrance, Handle person press

Operation Steps

which number holes queen to choosing , the machine tool working table being swayed arriving at is 0.000 Be the location owing a circumference a hole

2. Import process middle, YAxis scintillation that can not stay, Press **ent**, That the number displays a form is able to enter next step voluntarily
3. If operation person requires that the halfway is temporary remove from "the circumference mark of hole " function. When returning to regular ABS state, X , Y , coordinate show, Press **TAN** Withdraw from temporarily, Press **TAN** return to circumference mark of hole state.


Ellipse be allotted a hole

Function: The god of the earth who points out that the obvious form of number provides the convenient ellipse halving hole function , handles person requires English to import an ellipse

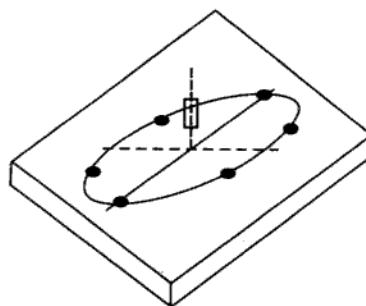
X , Y axis radius
Elliptic initiation angle

Elliptic termination angle

Elliptic maximal hole number

mounts every halving hole location , every hole location is set up for zero to point out that the obvious form of number calculates out an ellipse just voluntarily, Person needs operation

Press **↑** or **↓** Which and then the upper hole choosing to the ellipse, the machine tool working table is swayed to zero , is the location being a hole's turn.


eg: X axis radius:20mm

Y axis radius: 30mm

Initiation angle: 0°

End an angle : 360°

The NO: 6

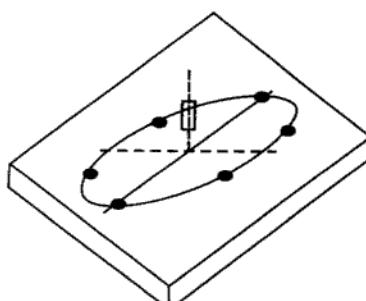
Operation Steps

Attention:

1. The central point location is X=0, Y=0
2. The halving hole hole number is that the angle divides till destination angle from starting point along the clockwise sense.
3. Think that the initiation angle is 0° , ending an angle is 360° points , ought to be when importing the hole number (N+1)

Operation steps:

1. Fix position for zero first with workpiece centre location, then

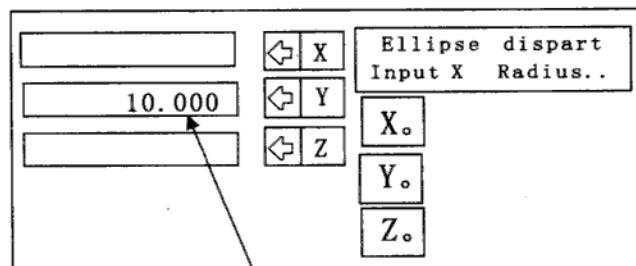

press enter the ellipse mark of hole function

eg: X, Y axis radius: —— 20, 30mm

Initiation angle: —— 30°

End an angle: —— 360°

The No: —— 6



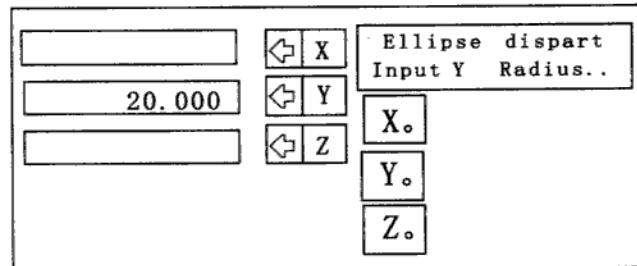
<input type="text"/>	<input type="button" value="X"/>	Ellipse dispart	
<input type="text" value="10.000"/>	<input type="button" value="Y"/>	Input X Radius..	
<input type="text"/>	<input type="button" value="Z"/>	X.	
		Y.	
		Z.	

Steps

2. Import the X axis radius (R: 20)

press **2** **0** **ent**

Elliptical display
Input X Radius..


10.000

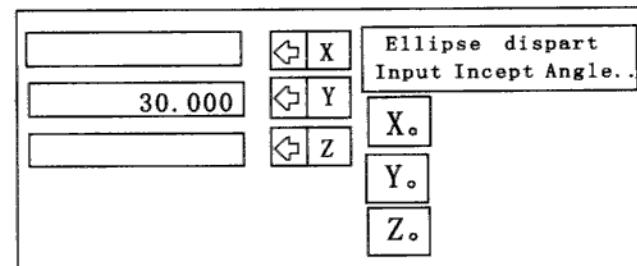
X.
Y.
Z.

In the first place radius interposing

This dialog box shows an input field with '10.000' and buttons for X, Y, and Z axes.

In the first place radius interposing

Elliptical display
Input Y Radius..


20.000

X.
Y.
Z.

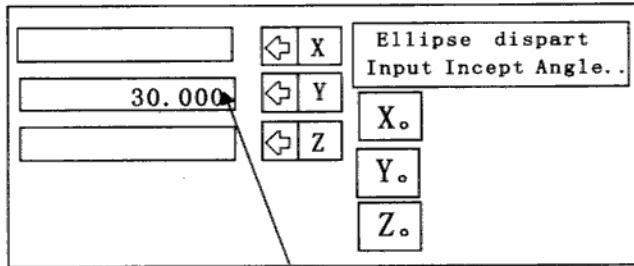
X.
Y.
Z.

This dialog box shows an input field with '20.000' and buttons for X, Y, and Z axes.

by **3** **0** **ent**

Elliptical display
Input Incept Angle..

30.000


X.
Y.
Z.

X.
Y.
Z.

This dialog box shows an input field with '30.000' and buttons for X, Y, and Z axes.

3, starting point of importation

by **0** **ent**

Elliptical display
Input Incept Angle..

30.000

X.
Y.
Z.

X.
Y.
Z.

This dialog box shows an input field with '30.000' and buttons for X, Y, and Z axes.

The starting point of the original settings

<input type="text"/>	<input type="button" value="X"/>	Ellipse dispart
<input type="text" value="0.000"/>	<input type="button" value="Y"/>	Input Incept Angle..
<input type="text"/>	<input type="button" value="Z"/>	
		X.
		Y.
		Z.

4, input termination perspective

by

Steps

<input type="text"/>	<input type="button" value="X"/>	Ellipse dispart
<input type="text" value="50.000"/>	<input type="button" value="Y"/>	Input The End Angle
<input type="text"/>	<input type="button" value="Z"/>	
		X.
		Y.
		Z.

The termination point of the original settings

<input type="text"/>	<input type="button" value="X"/>	Ellipse dispart
<input type="text" value="360.000"/>	<input type="button" value="Y"/>	Input The End Angle
<input type="text"/>	<input type="button" value="Z"/>	
		X.
		Y.
		Z.

5, the largest hole of input (number of holes)

<input type="text"/>	<input type="button" value="X"/>	Ellipse dispart
<input type="text" value="5.000"/>	<input type="button" value="Y"/>	Input The Most NO..
<input type="text"/>	<input type="button" value="Z"/>	
		X.
		Y.
		Z.

The original settings, the biggest hole

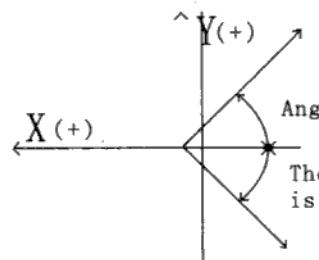
Steps

- 17.320	<input type="button" value="X"/>	Ellipse bore
- 15.000	<input type="button" value="Y"/>	Hole NO: 1
	<input type="button" value="Z"/>	X.
		Y.
		Z.

Direct access to the processing, if the completion of the processing,

according to exit .

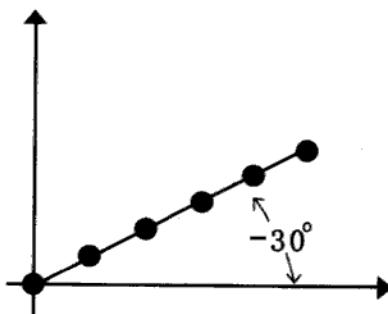
Note: 1, in the process, according to the operator of choose the first few holes, it will shake the machine table coordinates 0.000 is the location of the elliptical holes.


2, the importation process, the Y-axis will be kept flashing at after a few tables will be automatically entered in the next step.

3, the operator need to temporarily withdraw from the middle of the "oval-hole" function, ABS returned to the normal state of X, Y, Z ride

Superscript, according to temporarily withdraw from the , and then return to the oval -hole state.

Area-Hole



Features: Chinese
Dsub-slash
provide tips for YX
processing center
in the same plane
has been online,

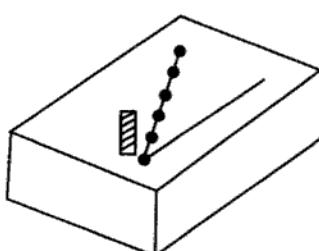
and uniform distribution of holes, the operator simply enter the following parameters slash length (first Kongyuan into our final hole

center distance) slash angle (referring to slash X-axis and the angle between the direction of) a few holes in the input parameters after a few tables will be automatically calculated slash the location of the hole, the operator

according to choose holes, and then shaken to the workpiece X-axis is 0.000, 0.000 Y axis position is the location of the hole

Example: For the diagram shows the workpiece, parameter setting is as follows

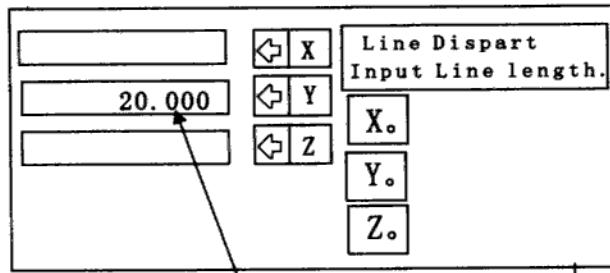
Area Length: 150 mm


Area angle: -300

Hole: 6

Steps:

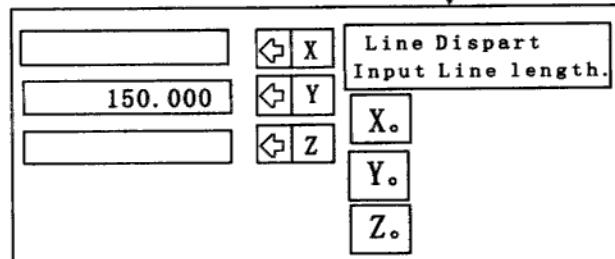
1, turning tools at the first hole slash the first point, and then


click to enter a slash--functional

<input type="text"/>	<input type="button" value="X"/>	Line Dispert Input Line length.
<input type="text" value="60.000"/>	<input type="button" value="Y"/>	X.
<input type="text"/>	<input type="button" value="Z"/>	Y.
		Z.

2, the length of input Area
Main window Y-axis settings of the original slash length

Followed by

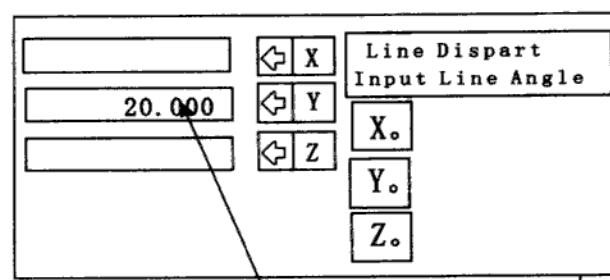


Line Dispert
Input Line length.

20.000

Xo
Yo
Zo

Slash the length of the original settings

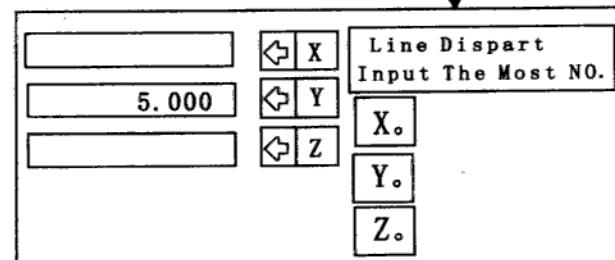

Line Dispert
Input Line length.

150.000

Xo
Yo
Zo

3, enter a slash perspective
Deputy window display "Please enter a slash perspective" Y window
showed that the last set of slash followed by

Steps



Line Dispert
Input Line Angle

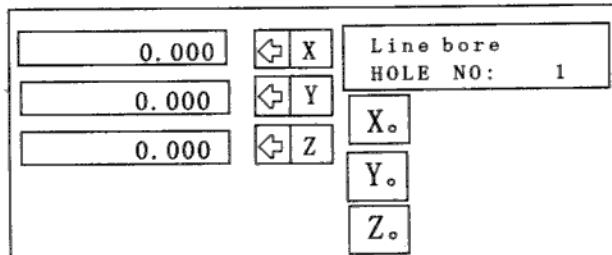
20.000

Xo
Yo
Zo

The original settings slash perspective

Line Dispert
Input The Most NO.

5.000


Xo
Yo
Zo

4, the importation of several slash-hole

Deputy window display "Please enter the biggest hole," Y window

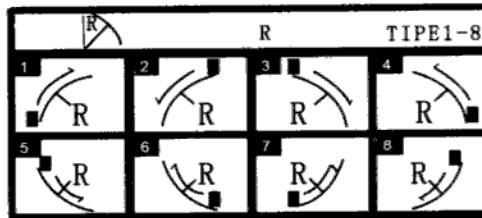
6 ent

display set up at the last few holes, followed by began processing

5, by **↑** or **↓** button, select the machining holes, and then shaken to the X-axis machine tool table, Y-axis display the "0.000" on the location of the points in the hole

Note: The completion of processing to return to normal by the state showed that in the slash-hole course, the operator can

TAN temporarily leave the **TAN** by the function returned to normal X, Y, Z coordinates, and then return to the slash-**TAN**-functional.



Arc processing

Features: few tips in simple arc processing system, a copper mold of single pieces, such as processing, Universal Milling Machine can easily and quickly processed by the control of the same arc cutting each controlling a smooth arc, cutting of the less smooth processing of the arc, cutting the greater the volume, processing more rough arc, The shorter processing time.

A: processing XZ and YZ plane

Arc processing XZ and YZ have eight kinds of processing methods, as shown in Fig.

Can be used in the processing of flat-bottomed cutter or circular cutter processing in the use of flat-bottom arc, as a knife from the diameter of 0.000

B: XY plane processing

In the XY plane processing, it is like eight processing, and processing of the vertical tool, and a way for each quarter

Circular arc for the processing and processing; Therefore, in processing XY plane, it is necessary to choose knife compensation, processing XY plane, it is flat-ended knife or knives, according to the actual value set tools diameter.

Arc processing parameters need to enter the following

Processing of choice

Select processing mode

Inner / outer arc processing options (XY-specific)

To be processed Radius

Tool diameter

Length of each processing

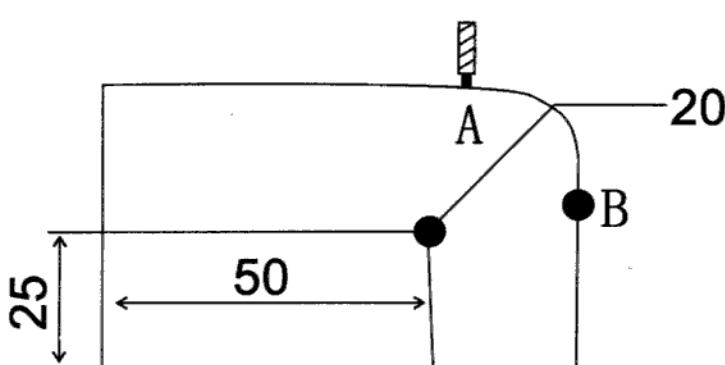
Example 1: To processing as shown arc AB 900, from point A to start processing, the end point B, parameter settings are as follows:

Processing side: XY

R processing mode: 3

Processing of Arc

Radius: 20 mm


Tool diameter: 6 mm

Feed: 0.5 mm

Steps:

1, rocking machine worktable, turning tools at point A, X axis cleared

2, entered the arc processing

Steps

Circle arc setup
 Choose Plane XZ

X.
Y.
Z.

Arc entered by processing

Circle arc setup
 Process Plane XZ

X.
Y.
Z.

The original settings plane processing

3, the processing of choice

4, followed by X ent select XY plane into the selection process model

Circle arc setup
 Choose Plane XY

X.
Y.
Z.

Note: XY plane by X options

YZ plane by Y choice

XZ plane by Z choice (on the two-axis X-axis choice XZ plane)

Steps

5, processing choice type

Circle arc setup
Process mode 1-8

1 2 3

X.
Y.
Z.

The original processing mode

6, select inner / outer arc processing

Circle arc setup
Process mode 1-8

1 2 3

X.
Y.
Z.

Circle arc setup
inner doing

1 2 3

X.
Y.
Z.

Note: The choice by **ent** Set in the original arc processing

Circle arc setup
out doing

1 2 3

X.
Y.
Z.

7, the importation of Radius

Deputy window display the "Enter Radius" Y-axis settings of the original window radius; followed by the importation of **2** **0**

ent completed radius

Circle arc setup
Input Beside Radius

<input type="text"/>	<input type="button" value="X"/>
<input type="text" value="50.000"/>	<input type="button" value="Y"/>
<input type="text"/>	<input type="button" value="Z"/>
	X. Y. Z.

A radius of the original settings

Circle arc setup
Input Beside Radius

<input type="text"/>	<input type="button" value="X"/>
<input type="text" value="20.000"/>	<input type="button" value="Y"/>
<input type="text"/>	<input type="button" value="Z"/>
	X. Y. Z.

8, input tool diameter

Deputy window display "Please enter diameter cutter" Y-axis settings of the original window tool diameter; followed by the importation of

6 completed diameter cutter

Circle arc setup
Input Sword Diameter

<input type="text"/>	<input type="button" value="X"/>
<input type="text" value="20.000"/>	<input type="button" value="Y"/>
<input type="text"/>	<input type="button" value="Z"/>
	X. Y. Z.

Tool diameter of the original settings

Circle arc setup
Input Sword Diameter

<input type="text"/>	<input type="button" value="X"/>
<input type="text" value="6.000"/>	<input type="button" value="Y"/>
<input type="text"/>	<input type="button" value="Z"/>
	X. Y. Z.

9, each input processing length

Deputy window display "Please enter Stepping length of the" Y original settings window each processing length; followed by

for each input processing length, arc into the processing

<input type="text"/>	<input type="button" value="X"/>	Circle arc setup
<input type="text" value="6.000"/>	<input type="button" value="Y"/>	Input Arc...
<input type="text"/>	<input type="button" value="Z"/>	X. Y. Z.

The original settings length

<input type="text"/>	<input type="button" value="X"/>	Circle arc setup
<input type="text" value="0.500"/>	<input type="button" value="Y"/>	Input Arc...
<input type="text"/>	<input type="button" value="Z"/>	X. Y. Z.

10, processing arc

Deputy display window "processing No. 1" to the X Window processing, Y window display of "0.000", the first point to complete processing,

and then start processing the second by points, repeat the last operation, has been processing the Deputy window display as "processing No. 72"

<input type="text" value="0.000"/>	<input type="button" value="X"/>	Circle Process
<input type="text" value="0.000"/>	<input type="button" value="Y"/>	Sequence NO: 1
<input type="text" value="0.000"/>	<input type="button" value="Z"/>	X. Y. Z.

<input type="text" value="23.000"/>	<input type="button" value="X"/>	Circle Process
<input type="text" value="23.000"/>	<input type="button" value="Y"/>	Sequence NO: 73
<input type="text" value="0.000"/>	<input type="button" value="Z"/>	X. Y. Z.

11, exit by the end processing

Note: In the arc in the process, the operator can temporarily leave the **TAN**, R function returned to normal X, Y, X-axis, then return to the arc processing function **TAN**

AUTO
R

Smooth arc processing

Smooth arc processing to enter the following parameters

Processing of choice

Select processing mode

Inner / outer smooth arc processing options (X, Y-specific)

X, Y-axis coordinates of the location of origin

Smooth radius to be processed

Tool diameter

Length of each step of processing

Starting point of view

End perspective

Example 1: machining surface: XY

Processing of Arc

X, Y-axis origin coordinates: (20, 30)

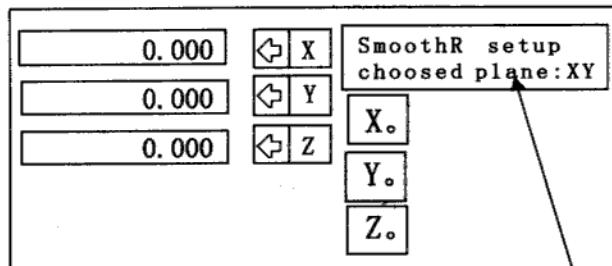
Radius: 15 mm

Tool diameter: 20 mm

Stepping in: 6 mm

Starting point of view: 00

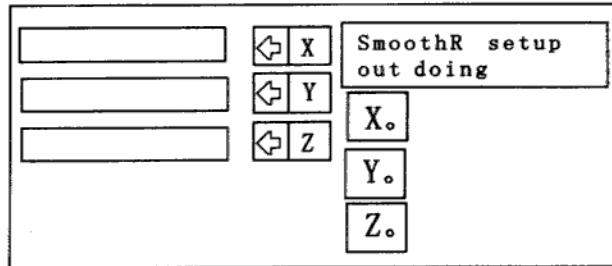
The termination point of view: 3600


Smooth arc processing steps:

1, rocking machine table, tool aimed at the smooth processing takes place starting point arc, each axis cleared.

0.000	<input type="button" value="X"/>	ABS	absolute
0.000	<input type="button" value="Y"/>	X.	
0.000	<input type="button" value="Z"/>	Y.	
		Z.	

Steps


2, by **AUTO** **R** to enter smooth arc processing functions.

The original settings plane

3, planar processing options, press **← X** or **← Y** keys to choose.

4, by **↓**, and then choose from within the arc arc processing or processing.

5, by **+** for the selection of Arc processing, according to **-** within arc processing. If you choose to face ZX, YZ plane, the direct input of the coordinates of the origin location of the origin of the XY coordinates position refers to the processing smooth arc relative to the center position by-0.1 **ent**

6, X axis coordinates input by **ent**; input Y-axis coordinate value by **ent**

Steps

<input type="text"/>	<input type="button" value="X"/>	SmoothR setup Input X-axis
<input type="text" value="20.000"/>	<input type="button" value="Y"/>	X.
<input type="text"/>	<input type="button" value="Z"/>	Y.
		Z.

<input type="text"/>	<input type="button" value="X"/>	SmoothR setup Input Y-axis
<input type="text" value="30.000"/>	<input type="button" value="Y"/>	X.
<input type="text"/>	<input type="button" value="Z"/>	Y.
		Z.

7, the importation of smooth radius, according to

<input type="text"/>	<input type="button" value="X"/>	SmoothR setup Input Arc Radius
<input type="text" value="5.000"/>	<input type="button" value="Y"/>	X.
<input type="text"/>	<input type="button" value="Z"/>	Y.
		Z.

A radius of the original settings

<input type="text"/>	<input type="button" value="X"/>	SmoothR setup Input Arc Radius
<input type="text" value="15.000"/>	<input type="button" value="Y"/>	X.
<input type="text"/>	<input type="button" value="Z"/>	Y.
		Z.

8, input tool diameter by .

Tool diameter of the original settings

SmoothR setup
Input Sword diam

10.000

X
Y
Z

X₀
Y₀
Z₀

9, Step length of input by

Step length of the original set of

SmoothR setup
Input arc.....

4.000

X
Y
Z

X₀
Y₀
Z₀

10, starting point of importation, by

Steps

	<input type="button" value="X"/>	SmoothR setup
	<input type="button" value="Y"/>	Input Incept Ang
15.000	<input type="button" value="Z"/>	
		X.
		Y.
		Z.

The starting point of the original settings

	<input type="button" value="X"/>	SmoothR setup
	<input type="button" value="Y"/>	Input Incept Ang
0.000	<input type="button" value="Z"/>	
		X.
		Y.
		Z.

ent

11, the end point of input by

	<input type="button" value="X"/>	SmoothR setup
	<input type="button" value="Y"/>	Input The Eng Angle
320.000	<input type="button" value="Z"/>	
		X.
		Y.
		Z.

The end point of the original settings

	<input type="button" value="X"/>	SmoothR setup
	<input type="button" value="Y"/>	Input The Eng Angle
360.000	<input type="button" value="Z"/>	
		X.
		Y.
		Z.

12, such as liquid crystal display

Steps

- 45.000	<input type="button" value="X"/>	Circle process
- 30.000	<input type="button" value="Y"/>	Sequence NO: 1
0.000	<input type="button" value="Z"/>	X.
		Y.
		Z.

13, will show zero-axis machine tools. R which is the starting point for processing. By display a processing point. Machine Tool Show then moved to zero axis. Repeat operations to complete all processing is completed processing.

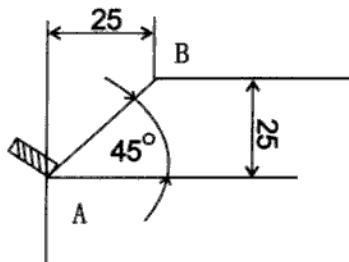
Slant processing

Features: few tips to provide a significant slope processing automatically calculate processing function, the operator can type the following parameters

Plane processing options (XY, YZ, for the slant processing XZ plane)

Slant angle (in the XY plane and the X-axis slant that positive angle in the YZ plane with the Y-axis slant that positive angle)

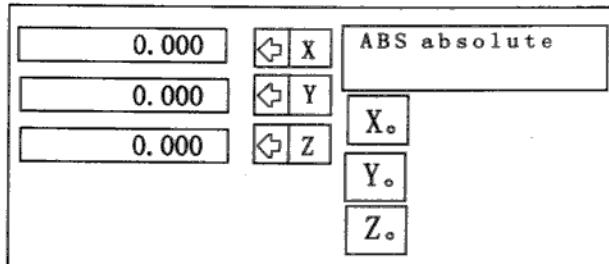
<input type="button" value="X"/>	Bevel Setup
<input type="button" value="Y"/>	Input Bevel Arc....
<input type="button" value="Z"/>	X.
	Y.
	Z.

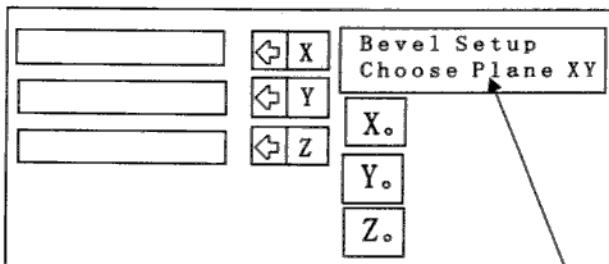

Each processing slant length

After several significant input parameters Table hypotenuse will be automatically calculate the location of each point, the operator by

 or option processing serial number, and then turning tool processing to the two axes of the plane showed that the value of 0.000 for all locations

Example: processing as shown slant AB, parameter settings are as


follows
Plane Processing: XZ
Slant angle: 45°


Each processing slant length: 1.2 mm

Steps

1, machine tool spindle tilt table 45°, rocking machine processing workstations at the slant-A start, the X-axis cleared, Z-axis cleared. In the normal display by X. Z.

2, by processing functions will be inclined to enter parameter input, processing by the state directly to ent ABS absolute

The original settings plane processing

Steps

3, the processing of choice

by and then choose XZ plane to enter the next step "input bevel angle"

Note: XY plane by choice

YZ plane by choice

XZ plane by choice

<input type="text"/>	<input type="button" value="← X"/>	Bevel Setup
<input type="text"/>	<input type="button" value="← Y"/>	Choose Plane zx
<input type="text"/>	<input type="button" value="← Z"/>	X.
		Y.
		Z.

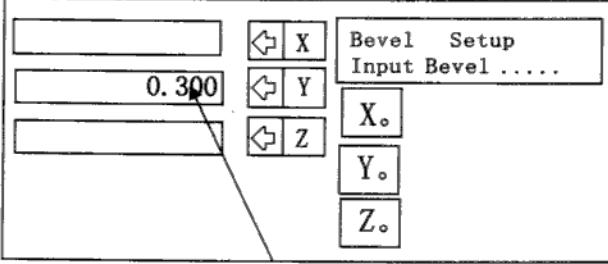
4, slope angle input

Deputy window display "Please enter slant angle .." Y-axis settings of the original slant angle. Press

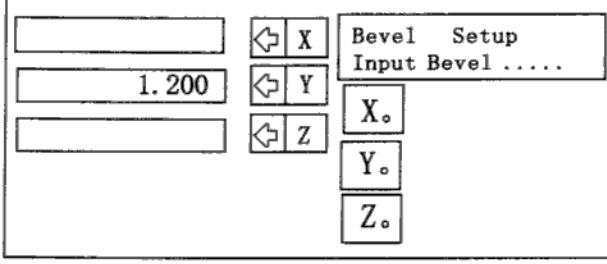
<input type="text"/>	<input type="button" value="← X"/>	Bevel Setup
<input type="text" value="20.000"/>	<input type="button" value="← Y"/>	Input Bevel Arc.....
<input type="text"/>	<input type="button" value="← Z"/>	X.
		Y.
		Z.

The slant angle of the original settings

<input type="text"/>	<input type="button" value="← X"/>	Bevel Setup
<input type="text" value="45"/>	<input type="button" value="← Y"/>	Input Bevel Arc.....
<input type="text"/>	<input type="button" value="← Z"/>	X.
		Y.
		Z.


5, each input processing slant length

Deputy window display the "Z-axis stepper type of" Y-axis stepper


Steps

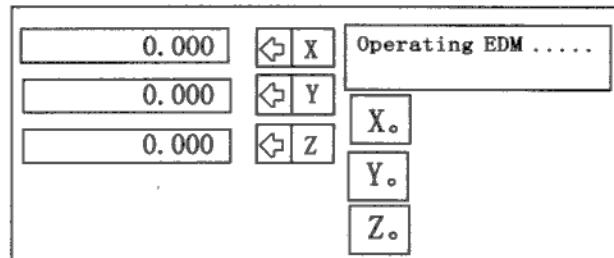
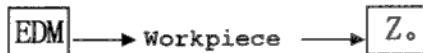
set by the original volume.

Press 1 • 2 ent

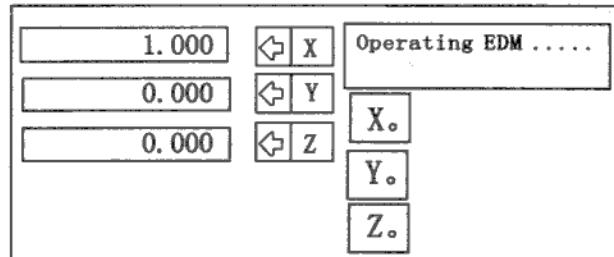
Stepping of the original settings

6, processing slant

Deputy display window "processing No. 1" to the X-axis lathe tool processing, and Z-axis showed that the first point 0.000 processing completed by under then processing point

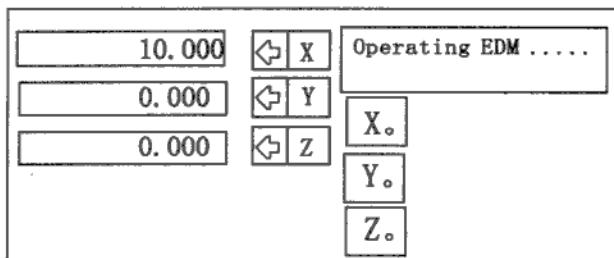


7, at or in the switch between the points

8, processing has been completed, showed that by the state to return to normal

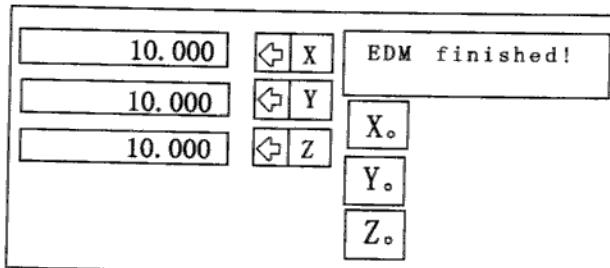

Use only the processing of input can be processed

Example: processing - a depth of 10 mm in parts:

1, the copper surface after the collision in the Z-axis cleared



2, EDM by entering EDM functions

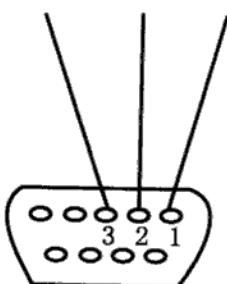

3, the depth of insertion 10

Press 1 0 → ent

Upon completion of the above steps can be EDM. Processing place, protecting the auxiliary show at this time to withdraw from the EDM,

according to EDM can be

Note:


In the second step, if the X-axis no data (shown as 0.000), show support for the "EDM machining finished", can not be placed at the depth of need in the Z-axis EDM not cleared before entering, the Home a depth of the Z and then to operate.

EDM functions output wiring
to provide a significant number of EDM specific features when the copper electrode has reached the depth of user settings,
digital display table in the relay switch signal will be issued, EDM machine will stop.

Connection of single-outputicon

digital display table back a DB9 socket, the socket is the digital output output table EDM relay at the wiring.
Wiring pin and methods are as follows:

(Yellow) (red) (black)

To process with the "closed" in place of "open" access: 2 and 3 feet (normally closed) to the process as "open" in place of "closure" to: 1 to 2 feet (normally open) often open to the general control.
Note: the carton configuration of an output control.

The basic parameter settings

A plus or minus direction switch

Features: You can fine-tuning the direction of the axis of plus or minus

Example: by button to enter the parameter settings

By to the "X-axis count switching positive", and then switch the direction of

By can choose Z-axis or Y-axis direction switch completed

By exit

Second, SDM coordinates input mode switch

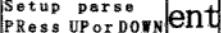
After entering the basic parameters, according to the choice "SDM coordinates input mode switching," and then switch

When SDM model "0", input data for the actual value

When SDM model for the "1", contrary to input data for a few

Advanced users

One. Advanced users settings


1. Enter the parameters set by, according to the choice of "internal Preferences"

2. And then the right of the LCD window will show "Password: "

3. input Password

Two. Resolution settings

After entering advanced users based on user configuration requirements from the production home settings, users must not lose chaos on chaos, otherwise prevented normal use. Functional disorder caused by the software must be sent back to the manufacturers to set up, otherwise no warranty.

1, in the senior user settings, the LCD window on

tips enter resolution settings, and our digital form can be carried out separately for each axis resolution settings.

Steps

2, when entering resolution settings, the X, Y-axis show such as

"0.00500." At this time by the X-axis display window flashes on or bond cycle choose a different resolution, and then the resolution of the current selected. Showing no window immediately, it means that the action has been completed.

Note: If you would like to set up three-axis resolution, select a shaft after not directly by , but that on-demand changes in the resolution of several key axis of the home such as

3, linear compensation

Features: tips provide linear compensation, in accordance with the actual value of the processing and observation of the error between the value of compensation amendments.

4, restore factory settings.

Show resumed factory settings, according to key Chinese Show: "Please wait initialization started...." and wait for a few seconds after the resumption of liquid crystal display "button on ENT restore settings," saying that this has been completed factory settings.

Grating linear displacement sensor

1, Overview

GXF-grating linear displacement sensor for various models of the machine tool table linear displacement measurement, the precision optical grating that it has been lost for the accuracy of the accuracy of the old machine table, transformation of practical significance, the new machine worktable supporting the use of, in terms of improving production efficiency machining accuracy or all the great advantages.

GXF sensor structure is simple, compact, stable performance, reliable, easy installation, it will certainly promote the use of technology will bring about benefits, economic and social benefits.

2, Technical Specifications

Sensor Model: GXF

Grating Ceju: 20 μ m

Resolution: 5 μ m

Accuracy: \pm 3 μ m (L <200m)

\pm 8 μ m (200mm <L <500mm)

\pm 15 μ m (500mm <L <1000mm)

Repeatability: \pm 5 μ m

The pace of work: not less than 25 m / min

Output waveform: two square Road

Zero Pulse: Pulse is

Operating voltage: +5 V / +12 V

The effective length: Le = 100mm ~ 1000mm (one stall per 50 mm)

Dimensions: 28mm \times 58mm (Le +144) mm (including the first reading)

Weight: (0.5 \times Le +0.00123) Kg

Work Humidity: 00 ~ 400

3, the installation of digital systems

1), the preparatory work before installation

According to install a machine table position, direction, choose to install the base surface. Machine table with the two-way parallel track error should be less than 0.1 mm, then the vertical surface on the installation of 6 mm deep and M5 and M6 of the two 8 mm deep FORM, the two hole spacing and installation map shown in the table below.

2), installation requirements:

A select few in the installation location and direction, it is necessary to observe the user to display data, and user functions.

B, in order to prevent oil, water, dust, iron filings, and other deposition, sensors to flip, when the modification of the machine table, and have the best shield.

C, in accordance with the requirements of machine tool table, cable leads to swap about the need direction, it must not adjusted before installation to prevent or at the scene pack Rafah power cable.

3), installation method and adjustment

A mechanical part:

According to the installation plans and table size installation, calibration requirements to use Dial Gauge Sensor shell to guide parallel with the machine table (not more than 0.1 mm), then fastening the two ends of the sensor M5 screw fastening later check with Dial Indicator again, and another two readings M5 screw fastener head, dropping positioning blocks, and then the sensor cables plug socket connecting several significant Table, Table was opened several power switches, digital time of counting clear and bright, counting signal stability, and can work, in order to prevent damage sensor, and if the machine table to effectively than sensors measuring length, should be pre-installed Limit block.

B, electrical parts:

Grating Sensors installed, as required, to be part of the high-speed electrical plugs pin function, the sensor voltage +12 V or +5 V, if the user with the use of digital production companies in the electricity table before check the output voltage digital Table it meets the

requirements, as well as plugs on its feet with. Table closed several significant power will be significantly behind few plugs into a socket, it should be noted at the outlet plugs will be after positioning, then plugs and sockets nut tightening then opened several significant power table, shaking table corresponding coordinates machine Guides, several significant scale should count.

4, repair and maintenance of the sensors:

1), sensors and digital form should be placed on drying and humidity to the location.

2), the sensor should be self-protective shell used to avoid affecting the dirt splash.

3), leads the cable should have fixed the machine tool bed.

4), the use of sensors in the process, not arbitrary demolition.

5), due to a processing machine vibration table, attention should be fixed installation connecting screws tight to prevent loosening and avoid lost accuracy.

6), a day before to work outside the iron filings or sensor coolant cleaning clean, not with guns blowing wind sensor sealant, dirt or so iron filings into the life and impact sensor.

5, and product warranty period of custody:

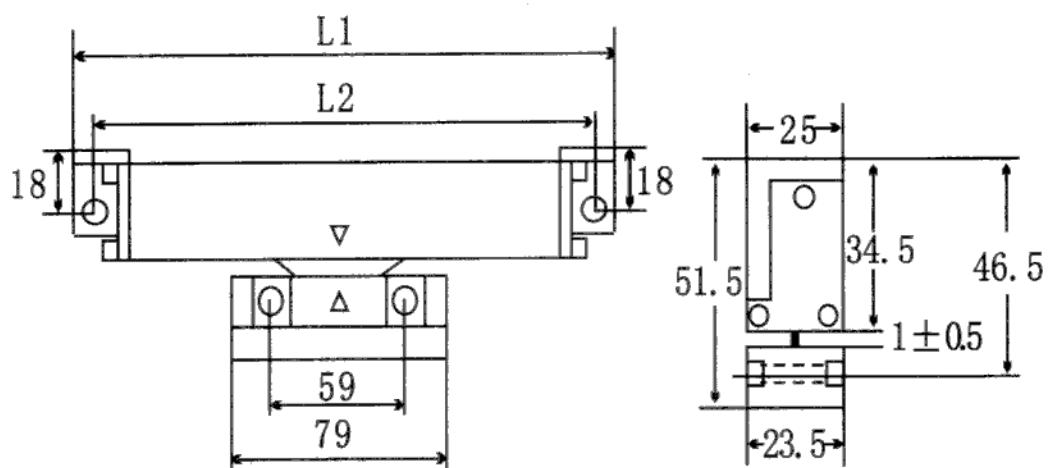
1), the product should be stored in the following conditions:

A, Environment Temperature: -600 C to-400C

B, the relative temperature: <90%

C, no corrosive gases around

2), in compliance with the custody of users, installation, the use of the provisions of circumstances, if a shipment from the factory products because of poor manufacturing or damage occurred not work, the manufacturing plant for free repair and replacement users, or users over time causes damage. Factory appropriate charge, as the case replacement parts and maintenance costs, if


The factory door repair services, the costs should be charged appropriately.

Grating itineraries and linear displacement sensor installation Size

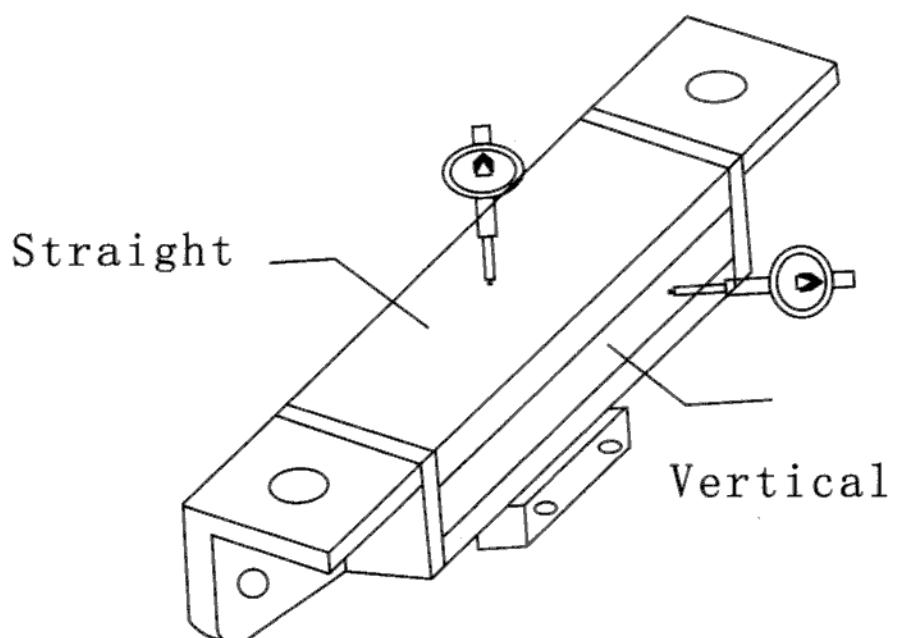

Le:mm	L1:mm	L2:mm
100	239	221
150	289	271
200	339	321
250	389	371
300	439	421
350	489	471
400	539	521
450	589	571
500	639	621
550	689	671
600	739	721
650	789	771
700	839	821
750	889	871
800	939	921
850	989	971
900	1039	1021
950	1089	1071
1000	1139	1121

Diagram showing the installation

Pic1

Pic2

Fault	Analyze the causes	Approach
Do not show	1, missed good power 2, a tributary of 110 V power supply voltage is not within the scope of ~ 220V	1, power line inspection plug and socket Interpolation is strong, whether good contact. 2, inspection of a significant form of insurance is good. 3, tests whether the input voltage 110 V ~ 220V range.
Shell Charged	1, grounding bad 2, 220 V power leakage	1, machine tool bed with a few significant leader Connectivity, and power requirements of the earth The same. 2, machine Chuangjiao such as plastic mats, the ground power supply must be linked to good ground, or else they affect low-voltage power supply of sensors operating inconvenient. 3 220 V power leakage, speed electrician requested formal inspection, there are still problems such as Please contact with the manufacturers of the service. 4, please do not access FireWire 380 V Power Zone, to avoid burn a few significant power or form factors of insecurity, affecting the operator's personal safety.
Axis showed a value of twice the normal	1, optical grating resolution settings incorrect 2, a set-axis diameter display mode	1, set the correct resolution 2, the radius pattern display settings

Fault	Analyze the causes	Approach
X, Y window display confusion, numerical No laws, inaccurate	Table may be in power a few bad contact, Affected by the power disruption	<p>1, a few tables in the power-down and then re-opened, a few significant forms can be automatically scans of their own-one.</p> <p>2, if the first step is not operating the trip, please refer to the specification of-way.</p> <p>3, if the next step is still unable to rule out the possibility of the service, please contact manufacturers.</p>
Table axis of a significant number do not count	<p>1, grating-foot table with several significant contact is good.</p> <p>2, no grating signal output device.</p> <p>3, check optical grating-foot body, feet first is the normal installation, whether users limit themselves demolished, rendering the first reading by ultra-foot trip Penghuai body.</p> <p>4, a few tables in the axis counting problems.</p>	<p>Another axis grating and see whether they can change their normal count, if transplanted to normal after a device is the root counting device malfunction. Customers are requested to speed the above issues and service companies associated with the Department.</p>

<p>Table count several significant errors that distance and the actual distance inconsistent</p>	<p>1, machine tool accuracy Guide bad.</p> <p>2, machine tool running too fast.</p> <p>3, sub-grating device installation requirements of the parallel device did not adjust well, whether on Connecting Plate ministries firmly installed.</p> <p>4, the grating set foot resolution inconsistent with the actual resolution.</p> <p>5, linear error compensation value is not set up correctly.</p> <p>6, grating bad feet, and missed a few.</p>	<p>1, maintenance or transfer Machine Tool Guide is space.</p> <p>2, reducing the speed.</p> <p>3, reload grating feet firmly ministries to install on Connecting Plate.</p> <p>4, set the correct resolution.</p> <p>5, set the correct value of the linear error compensation.</p> <p>6, repair or replacement of optical grating.</p>
--	---	--